Question

Use Laplace's method to show that

$$
\int_{-1}^{1} d t, e^{-x\left(2 t^{2}-t^{4}\right)} \sqrt{2+t} \sim \sqrt{\frac{\pi}{x}}, x \rightarrow+\infty
$$

and obtain the corresponding result for

$$
\int_{0}^{3} d t, e^{-x\left(2 t^{2}-t^{4}\right)} \sqrt{2+t} \quad x \rightarrow+\infty
$$

Answer
$I=\int_{-1}^{+1} d t e^{-x\left(2 t^{2}-t^{4}\right)} \sqrt{2+t}$
$h(t)=2 t^{2}-t^{4}, h^{\prime}(t)=4 t-4 t^{3}, \Rightarrow t=0$ or ± 1 are min $/$ max
$h^{\prime \prime}(t)=4-12 t^{2} \Rightarrow \begin{aligned} & t=0: h^{\prime \prime}(0)=4>0 \Rightarrow \text { min } \\ & t= \pm 1: h^{\prime \prime}(\pm 1)=-8<0 \Rightarrow \text { max }\end{aligned}$
Don't contribute at leading order of exponentials

Thus we have a full contribution from the min. at $t=0$.
Set

$$
\begin{aligned}
u^{2} & =h(t)-\overbrace{h(0)}^{=0}=2 t^{2}-2^{4} \\
2 u d u & =h^{\prime}(t) d t
\end{aligned}
$$

Therefore $I=\int_{-\sqrt{h(-1)-h(0)}}^{\sqrt{h(1)-h(0)}} e^{-x u^{2}-x h(0)} \underbrace{\frac{\sqrt{2+t(u)}}{h^{\prime}(t(u))}} \cdot 2 u, d u$
Need to expand this about $t=0(u=0)$
$h^{\prime}(t)$ approxh $h^{\prime \prime}(0) t \quad t \rightarrow+\infty$ by Taylor
and $u^{2}=h(t)-h(0) \approx \frac{h^{\prime \prime}(0) t^{2}}{2}, t \rightarrow+\infty$
$\Rightarrow u= \pm \sqrt{\frac{h^{\prime \prime}(0)}{2}} t$ (take $+\sqrt{ }$ as t increases when u increases.)
Therefore

$$
\begin{aligned}
I \approx & \int_{-\sqrt{h(1)-h(0)}}^{\sqrt{h(1)-h(0)}} e^{-x u^{2}} 2 u \frac{\sqrt{2+t(u)}}{h^{\prime \prime}(0) u \sqrt{\frac{2}{h^{\prime \prime}(0)}}} d u \\
\approx & 2 \int_{-\infty}^{+\infty} \frac{e^{-x u^{2}}}{\sqrt{h^{\prime \prime}(0)}} d u \quad x \rightarrow+\infty \\
& \quad \text { errors are exponentially small as } x \rightarrow+\infty \\
& \frac{2}{\sqrt{4}} \int_{-\infty}^{+\infty} e^{-x u^{2}} d u \\
& =\sqrt{\frac{\pi}{x}} x \rightarrow+\infty
\end{aligned}
$$

(By standard Gaussian integral)
KNOW: $\int_{-\infty}^{+\infty} e^{-\alpha x^{2}} d x=\sqrt{\frac{\pi}{\alpha}}$
When we consider

$$
\int_{0}^{3} d t e^{-x\left(2 t^{2}-t^{4}\right)} \sqrt{2+t}, x \rightarrow+\infty
$$

Looking at the graph of $h(t)=2 t^{2}-t^{4}$ as above, we see that $t=0$ is an endpoint minimum but $t=3$ is an overall minimum on the range of integration. Thus the dominant behaviour will come from $t=3$, a linear endpoint. Thus we proceed as in question 6:

$$
u=h(t)-\underbrace{h(3)}=h(t)+63
$$

$$
d u=h^{\prime}(t) d t
$$

NB endpoint is at RHS

$$
\begin{aligned}
J=\int_{0}^{3} e^{-x\left(2 t^{2}-t^{4}\right)} & \sqrt{2+t} d t \sim \int_{\text {h(0)-h(3)=+63}}^{0} e^{-x u+63 x} \frac{\sqrt{2+t(u)}}{h^{\prime}(t(u))} d u \\
u=h(t)-h(3) & \approx h^{\prime}(3)(t-3) t \rightarrow 3 \\
& =\left(4 \cdot 3-4 \cdot 3^{3}\right)(t-3) \\
& =-96(t-3)
\end{aligned}
$$

NB minus sign will reverse limits in integral
$h^{\prime}(t) \approx h^{\prime}(3)+h^{\prime \prime}(3)(t-3)$ by Taylor
$=-96$ toleadingorder
Also need expansion of $\sqrt{2+t}$ about $t=+3$:
$\sqrt{2+t}=\sqrt{5}+O(t-3) t \rightarrow 3$ by Taylor Therefore

$$
\begin{aligned}
J & \sim \int_{63}^{0} e^{-x u+63 x} \frac{\sqrt{5}}{-96} d u \quad x \rightarrow+\infty \\
& =+e^{63 x} \frac{\sqrt{5}}{96} \int_{0}^{63} e^{-x u} d u\left(-\int_{63}^{0}=+\int_{0}^{63}\right) \\
& \sim e^{63 x} \frac{\sqrt{5}}{96} \int_{0}^{\infty} e^{-x u} d u \quad x \rightarrow+\infty \\
& \sim e^{63 x} \frac{\sqrt{5}}{96 x} x \rightarrow+\infty
\end{aligned}
$$

The two integrals above only differ by their range of integration. However they have dramatically different behaviour as $x \rightarrow+\infty$. The first tends to zero $\left(\frac{1}{\sqrt{x}} \rightarrow 0\right.$ as $\left.\mathrm{x} \rightarrow+\infty\right)$, the second $\rightarrow+\infty\left(e^{63 x} \rightarrow \infty\right.$ as $\left.\mathrm{x} \rightarrow+\infty\right)$. In fact, even when $x=+1, e^{63} \approx 2.3 \times 10^{27}$.

