Question

Examine where the dominant contributions arises from, perform a local expansion and Use Watson's lemma to show
(a) $\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)}(1+t)^{\frac{5}{2}} d t \sim \frac{1}{2 x}, x \rightarrow+\infty$
(b) $\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)} \log (1+t) d t \sim \frac{\log 2}{2 x}, x \rightarrow+\infty$
(c) $\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)} \log (1+t) d t \sim \frac{1}{4 x^{2}}, x \rightarrow+\infty$
(d) $\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)}\left(t+3 t^{2}\right)^{-\frac{1}{2}} d t \sim \sqrt{\frac{\pi}{2 x}}, x \rightarrow+\infty$

Answer

(a) $\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)}(1+t)^{\frac{5}{2}} d t \quad x \rightarrow+\infty$ $h(t)=\left(t^{2}+2 t\right) \Rightarrow \underbrace{h^{\prime}(t)=2 t+2} \Rightarrow h^{\prime \prime}(t)=2$
\min. at $t=-1$ which is outside our range of integration

Thus the minimum value of $e^{-x h(t)}$ occurs when $t=0, h(t)=0$. The dominant contribution will come from this linear endpoint at $t=0$. This differs slightly from the examples in the notes.
We could try an integration by parts but this looks messy. Try instead a Watson type argument and Taylor expand about $t=0$.

$$
\begin{equation*}
h(t)-\underbrace{h(0)}=\underbrace{h^{\prime}(0)}(t-0)+O(t=0)^{2} \tag{1}
\end{equation*}
$$

$=0 \quad$ Not zero here as it's a linear endpoint $h^{\prime}(0)=2$ (from above)
Therefore set $\begin{aligned} u & =h(t)-h(0) \\ d u & =h^{\prime}(t) d t\end{aligned}$
But (1) $\Rightarrow u \approx 2 t$.
So in integral:

$$
\begin{aligned}
I & =\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)}(1+t)^{\frac{5}{2}} d t \\
& =e^{-x \ln (0)} \int_{0}^{\infty} e^{-x u} \frac{(1+t(u))^{\frac{5}{2}}}{h^{\prime}(t(u))} d u \\
& \approx \int_{0}^{\infty} e^{-x u} \frac{\left(1+\frac{u}{2}\right)}{h^{\prime}(t(u))} d u \\
h^{\prime}(t) & =\underbrace{h^{\prime}(0)}+\frac{h^{\prime \prime}(0)}{2}(t-0)^{2}+\cdots=2 \\
& \neq 0 \text { as it's a linear endpoint }
\end{aligned}
$$

from above, to leading order.
Therefore $d u \approx 2 d t$
Therefore $I \approx \int_{0}^{\infty} e^{-x u} \frac{\left(1+\frac{u}{2}\right)^{\frac{5}{2}}}{2} d u$
Now apply Laplace: contribution centred about $u=0$ as $x \rightarrow+\infty$.

$$
\begin{aligned}
I \sim & \underbrace{\frac{\left(1+\frac{0}{2}\right)^{\frac{5}{2}}}{2}}_{\text {to leading order this is a constant. }} \int_{0}^{\infty} e^{-x u} d u, \text { as } \mathrm{x} \rightarrow+\infty \\
& \sim \text { So take it outside the integral } \\
\sim & \frac{1}{2 x} \quad x \rightarrow+\infty \text { as required }
\end{aligned}
$$

(b) The dominant contribution again comes from $t=0$ (same $h(t)$ as above). The only difference is the value of $f 9 t)=\log (2+t)$ at $t=0$. Thus the method goes through as for (a) with:

$$
\begin{aligned}
I & =\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)} \log (2+t) d t \\
& \sim \frac{\log (2+0)}{2} \int_{0}^{\infty} e^{-x u} d u \text { as } \mathrm{x} \rightarrow+\infty \\
& \sim \frac{\log 2}{2 x} \quad x \rightarrow+\infty
\end{aligned}
$$

(c) Here the dominant contribution is again from $t=0\left(h(t)=t^{2}+2 t\right.$ again). But now $f(t)=\log (1+t)$ which is 0 at $t=0$. This does not necessarily mean that the contribution from $t=0$ vanishes. Instead we must go to higher order in the expansion of $\frac{f(t)}{h^{\prime}(t)}$, keeping it inside the integral.
Proceed as above until:
$I=\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)} \log (1=t) d t-\int_{0}^{\infty} \frac{\log (1+t(u))}{h^{\prime}(t(u))} d u$
where $h^{\prime}(t) \approx 2$ and $u \approx 2 t$.
Now just expand the log inside the integral:
$I \sim \int_{0}^{\infty} \frac{e^{-x u}\left(t(u)-\frac{t^{2}(u)}{2}+\cdots\right)}{2} d u \sim \int_{0}^{\infty} e^{-x u} \frac{u}{4}$ to leading order
$x \rightarrow+\infty$
Therefore $I \sim \frac{1}{4} \int_{0}^{\infty} e^{-x u} u \sim \frac{1}{4 x^{2}} \quad x \rightarrow+\infty$
(d) As above the dominant contribution is from the linear $t=0$ endpoint $\left(h(t)=t^{2}+2 t\right)$.
Consider $f(t)$

$$
f(t)=\frac{1}{\sqrt{t(1+3 t)}}=\frac{1}{\sqrt{t}}+O\left(t^{\frac{1}{2}}\right), t \rightarrow o^{+}
$$

The method proceeds as above, but we now retain the leading order of $f(t)$ as $t \rightarrow 0^{+}$in the integral.
$J=\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)}\left(t+3 t^{2}\right)^{-\frac{1}{2}} d t=\int_{0}^{\infty} e^{-x u} \frac{\left[t(u)+3 t^{2}(u)\right]^{-\frac{1}{2}}}{h^{\prime}(t(u))} d u$ $h^{\prime}(t) \approx 2$ to leading order and $u \approx 2 t$
Thus $J \sim \int_{0}^{\infty} \frac{e^{-x u}}{2} \cdot \frac{1}{\sqrt{t(u)}} \approx \frac{1}{2} \int_{0}^{\infty} \frac{e^{-x u}}{\sqrt{\frac{u}{2}}} d u=\frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{e^{-x u}}{u^{\frac{1}{2}}} d u$
Remembering the definition of the Γ-function, this last integral is $\frac{\Gamma\left(\frac{1}{2}\right)}{x^{\frac{1}{2}}}$.
Therefore $\int_{0}^{\infty} e^{-x\left(t^{2}+2 t\right)}\left(t+3 t^{2}\right) d t \sim \frac{\Gamma\left(\frac{1}{2}\right)}{\sqrt{2 x}}=\sqrt{\frac{\pi}{2 x}} x \rightarrow+\infty$

