
Question
Examine where the dominant contributions arises from, perform a local ex-
pansion and Use Watson’s lemma to show

(a)
∫
∞

0
e−x(t2+2t)(1 + t)

5
2 dt ∼ 1

2x
, x→ +∞

(b)
∫
∞

0
e−x(t2+2t) log(1 + t) dt ∼ log 2

2x
, x→ +∞

(c)
∫
∞

0
e−x(t2+2t) log(1 + t) dt ∼ 1

4x2
, x→ +∞

(d)
∫
∞

0
e−x(t2+2t)(t+ 3t2)−

1
2 dt ∼

√
π

2x
, x→ +∞

Answer

(a)
∫
∞

0
e−x(t2+2t)(1 + t)

5
2 dt x→ +∞

h(t) = (t2 + 2t)⇒ h′(t) = 2t+ 2
︸ ︷︷ ︸

⇒ h′′(t) = 2

min. at t = −1 which is outside our range of integration

-

6

t

t

¾
range of

integration

t

h(t)

Thus the minimum value of e−xh(t) occurs when t = 0, h(t) = 0. The
dominant contribution will come from this linear endpoint at t = 0.
This differs slightly from the examples in the notes.

We could try an integration by parts but this looks messy. Try instead
a Watson type argument and Taylor expand about t = 0.
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h(t)− h(0)
︸ ︷︷ ︸

= h′(0)
︸ ︷︷ ︸

(t− 0) +O(t = 0)2 (1)

=0 Not zero here as it’s a linear endpoint
h′(0) = 2 (from above)

Therefore set
u = h(t)− h(0) (2)
du = h′(t) dt (3)

But (1)⇒ u ≈ 2t.

So in integral:

I =
∫
∞

0
e−x(t2+2t)(1 + t)

5
2 dt

= e−x ln(0)
∫
∞

0
e−xu (1 + t(u))

5
2

h′(t(u))
du

≈
∫
∞

0
e−xu (1 +

u
2
)

h′(t(u))
du

h′(t) = h′(0)
︸ ︷︷ ︸

+
h′′(0)

2
(t− 0)2 + · · · = 2

6= 0 as it’s a linear endpoint

from above, to leading order.

Therefore du ≈ 2 dt

Therefore I ≈
∫
∞

0
e−xu (1 +

u
2
)

5
2

2
du

Now apply Laplace: contribution centred about u = 0 as x→ +∞.

I ∼ (1 + 0
2
)

5
2

2
︸ ︷︷ ︸

∫
∞

0
e−xu du, as x→ +∞

to leading order this is a constant.

So take it outside the integral

∼ 1

2x
x→ +∞ as required
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(b) The dominant contribution again comes from t = 0 (same h(t) as above).
The only difference is the value of f9t) = log(2 + t) at t = 0. Thus the
method goes through as for (a) with:

I =
∫
∞

0
e−x(t2+2t) log(2 + t) dt

∼ log(2 + 0)

2

∫
∞

0
e−xu du as x→ +∞

∼ log 2

2x
x→ +∞

(c) Here the dominant contribution is again from t = 0 (h(t) = t2 + 2t
again). But now f(t) = log(1 + t) which is 0 at t = 0. This does not
necessarily mean that the contribution from t = 0 vanishes. Instead

we must go to higher order in the expansion of
f(t)

h′(t)
, keeping it inside

the integral.

Proceed as above until:

I =
∫
∞

0
e−x(t2+2t) log(1 = t) dt−

∫
∞

0

log(1 + t(u))

h′(t(u))
du

where h′(t) ≈ 2 and u ≈ 2t.

Now just expand the log inside the integral:

I ∼
∫
∞

0

e−xu(t(u)− t2(u)
2

+ · · ·)
2

du ∼
∫
∞

0
e−xuu

4
to leading order

x→ +∞

Therefore I ∼ 1

4

∫
∞

0
e−xu u ∼ 1

4x2
x→ +∞

(d) As above the dominant contribution is from the linear t = 0 endpoint
(h(t) = t2 + 2t).

Consider f(t)

f(t) =
1

√

t(1 + 3t)
=

1√
t
+O(t

1
2 ), t→ o+

The method proceeds as above, but we now retain the leading order of
f(t) as t→ 0+ in the integral.
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J =
∫
∞

0
e−x(t2+2t)(t+ 3t2)−

1
2 dt =

∫
∞

0
e−xu [t(u) + 3t2(u)]−

1
2

h′(t(u))
du

h′(t) ≈ 2 to leading order and u ≈ 2t

Thus J ∼
∫
∞

0

e−xu

2
· 1

√

t(u)
≈ 1

2

∫
∞

0

e−xu

√
u
2

du =
1√
2

∫
∞

0

e−xu

u
1
2

du

Remembering the definition of the Γ-function, this last integral is
Γ(1

2
)

x
1
2

.

Therefore
∫
∞

0
e−x(t2+2t)(t+ 3t2) dt ∼ Γ(1

2
)√

2x
=

√
π

2x
x→ +∞
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