Question
Examine where the dominant contributions arises from, perform a local ex-
pansion and Use Watson’s lemma to show
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Answer

(a) / —PR2 (1 4 )3 dt x — +oo
h(t) = (2 +2t) = h'(t) =2t +2 = h'(t) =2
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min. at ¢t = —1 which is outside our range of integration
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Thus the minimum value of e=**® occurs when ¢t = 0, h(t) = 0. The
dominant contribution will come from this linear endpoint at ¢t = 0.
This differs slightly from the examples in the notes.

We could try an integration by parts but this looks messy. Try instead
a Watson type argument and Taylor expand about ¢ = 0.



Mﬂ—ﬂ9=ﬁﬂyﬁ—m+0@=®2ﬂ)

=0 Not zero here as it’s a linear endpoint

R'(0) = 2 (from above)

u = h(t)—h(0) (2)
du = KE)dt (3

But (1) = u=2t.

Therefore set

So in integral:
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from above, to leading order.

Therefore du ~ 2 dt
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Now apply Laplace: contribution centred about u =0 as x — +o0c.
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to leading order this is a constant.

So take it outside the integral

~ oo r — +00 as required
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(b) The dominant contribution again comes from ¢ = 0 (same h(t) as above).
The only difference is the value of f9t) =log(2+t) at t = 0. Thus the
method goes through as for (a) with:
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(c) Here the dominant contribution is again from t = 0 (h(t) = t* + 2t
again). But now f(¢) = log(1 + t) which is 0 at ¢ = 0. This does not
necessarily mean that the contribution from ¢ = 0 vanishes. Instead
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we must go to higher order in the expansion of , keeping it inside
the integral.

Proceed as above until:
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where h'(t) ~ 2 and u ~ 2t.
Now just expand the log inside the integral:
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(d) As above the dominant contribution is from the linear ¢ = 0 endpoint
(h(t) = t* + 2t).

Consider f(t)
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The method proceeds as above, but we now retain the leading order of
f(t) as t — 0% in the integral.
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