Question

Use Watson's lemma to calculate the full Poincaré asymptotic expansion of

(a)
$$\int_0^\infty e^{-xt} \log(1+\sqrt{t}) dt, \ x \to +\infty$$

(b)
$$\int_0^1 \frac{e^{-xt}}{\sqrt{t(2+t)}} dt, \ x \to +\infty$$

(c)
$$\int_0^\infty \frac{e^{-xt}}{\sqrt{t(2+t)}} dt, \ x \to +\infty$$

Answer

With Watson's lemma we must check existence of expansion of f(t) about t = 0 and $|f(t)| < Ae^{bt}$.

 $\int_0^\infty e^{-xt} f(t) dt \text{ for some finite } A, b.$

(a)
$$\int_0^\infty e^{-xt} \log(1+\sqrt{t})$$

Clearly
$$|log(1+\sqrt{t})| < e^t, \quad t > 0$$

Also $\log(1+\sqrt{t}) = \sum_{n=0}^{\infty} \frac{t^{\frac{n}{2}}}{n} (-1)^n$ by Maclaurin / Taylor series about t=0.

Thus
$$\int_0^\infty e^{-xt} \log(1+\sqrt{t}) dt \sim \sum_{n=0}^\infty \frac{(-1)^n}{n} \int_0^\infty e^{-xt} t^{\frac{n}{2}}.$$

$$\left(\lambda_n = \frac{n}{2}, \ a_n = \frac{(-1)^n}{n}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n} \frac{\Gamma(\frac{n}{2} + 1)}{x^{\frac{n}{2}} + 1}, \ x \to +\infty \text{ by Watson}$$

(b)
$$\int_0^\infty \frac{e^{-xt}}{\sqrt{t(2+t)}} dt = \left[\int_0^1 + \int_1^\infty \right] \frac{e^{-xt}}{\sqrt{t(2+t)}} dt$$

As framed in notes, we only have Watson for \int_0^∞ -type integrals. BUT \int_1^∞ is exponentially small as $x \to +\infty$:

$$\left| \int_{1}^{\infty} \frac{e^{-xt}}{\sqrt{t(2+t)}} dt \right| \leq \int_{1}^{\infty} \frac{e^{-xt}}{\sqrt{t(2+t)}} dt$$

$$\sqrt{t(2+t)} \geq \sqrt{3} \text{ for all } t \geq 1$$

$$\leq \int_{1}^{\infty} \frac{e^{-xt}}{\sqrt{3}} dt$$

$$= \frac{e^{-x}}{x\sqrt{3}}$$

$$= O\left(\frac{e^{-x}}{x}\right)$$

So for Poincaré purposes,

$$\int_0^\infty dt \sim \int_0^1 dt$$

Thus we apply Watson. Must check:

(i)
$$f(t) = \frac{1}{\sqrt{t(2+t)}} < Ae^{b-t} \text{ for all } t > 0, \text{ for some } A, \ b > 0$$

This is clearly satisfied by $A=1,\ b=1,$ i.e.,

$$\frac{1}{\sqrt{t(2+t)}} < e^t \quad \checkmark$$

(ii) f(t) has an expansion about t = 0.

$$f(t) = \frac{1}{\sqrt{2t}} \left(1 + \frac{t}{2} \right)^{-\frac{1}{2}} = \frac{1}{\sqrt{2t}} \sum_{s=0}^{\infty} \left(\frac{t}{2} \right)^s \frac{(-1)^s}{s!} \frac{\Gamma(s + \frac{1}{2})}{\Gamma(\frac{1}{2})} \quad \checkmark$$

We can work this last fraction out by using factorial notation to spot this as $\frac{(s-\frac{1}{2})!}{(-\frac{1}{2})!}$ and converting back to Γ functions by adding one to top and bottom.

Thus
$$\lambda_s - \frac{1}{2}$$

$$d_s = \frac{(-1)^s}{2^{s+\frac{1}{2}}} \frac{\Gamma(s+\frac{1}{2})}{s!\Gamma(\frac{1}{2})}$$

Therefore, from Watson:

$$\int_0^1 \frac{e^{-xt}}{\sqrt{t(2+t)}} dt \sim \sum_{s=0}^\infty \frac{(-1)^s \Gamma(s+\frac{1}{2})}{2^{s+\frac{1}{2}} s! \Gamma(\frac{1}{2})} \frac{\Gamma(s+\frac{1}{2})}{x^{s+\frac{1}{2}}} \quad x \to +\infty$$

Now $\Gamma(\frac{1}{2}) = \sqrt{\pi}$: KNOW THIS FOR THE EXAM!

Therefore
$$\sim \sum_{s=0}^{\infty} \frac{(-1)^s [\Gamma(s+\frac{1}{2})]^2}{2^{s+\frac{1}{2}} s! \sqrt{\pi} x^{s+\frac{1}{2}}}, \quad x \to +\infty$$

(c) From above, for Poincaré expansion

$$\int_0^1 \sim \int_0^\infty$$

so
$$\int_0^\infty \frac{e^{-xt}}{\sqrt{t(2+t)}} \sim \sum_{s=0}^\infty \frac{(-1)^s \left[\Gamma(1+\frac{1}{2})\right]^2}{2^{s+\frac{1}{2}} s! \sqrt{\pi} x^{s+\frac{1}{2}}}$$