Question
Use Watson’s lemma to calculate the full Poincaré asymptotic expansion of
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Answer

With Watson’s lemma we must check existence of expansion of f(t) about
t=0and |f(t)| < Ae”.
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e " f(t) dt for some finite A, b.
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As framed in notes, we only have Watson for / -type integrals.
0

BUT / is exponentially small as z — +oc:
1

o p—at

<[ty
L Jt(2+1)
JE241t) > V3 forall t > 1
Ooe—xtd

</ ¢

N

J Jieen "

So for Poincaré purposes,

0 1
/ dtw/ dt
0 0

Thus we apply Watson. Must check:
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(i) f(t) = ————= < A’ for all t > 0, for some A, b >0
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This is clearly satisfied by A =1, b =1, i.e.,
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(ii) f(t) has an expansion about ¢t = 0.
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We can work this last fraction out by using factorial notation to
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one to top and bottom.

spot this as and converting back to I' functions by adding
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Therefore, from Watson:
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(c) From above, for Poincaré expansion
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