Question

By using the change of variables $\tau=\log t$ and integrating by parts, show that as $x \rightarrow+\infty$
(a) $\int_{x}^{\infty} \frac{d t}{t^{2} \log t} \sim \frac{1}{x \log x}$
(b) $\int_{2}^{x} \frac{d t}{t \log (\log (t))} \sim \frac{\log x}{\log (\log (x))}$

Answer

(a) Let $\tau=\ln t \Rightarrow d \tau=\frac{d t}{t}$

Therefore $\int_{x}^{\infty} \frac{d t}{t^{2} \ln t}=\int_{x}^{\infty} \frac{d \tau}{t \ln t}=\int_{\ln x}^{\infty} \frac{e^{-\tau}}{\tau} d t$ $x \rightarrow+$ infty $\Rightarrow \ln x \rightarrow+\infty$
Use integration by parts

$$
\begin{array}{ll}
d v=e^{-\tau} & u=\frac{1}{\tau} \\
v=-e^{-\tau} & d u=-\frac{1}{\tau^{2}}
\end{array}
$$

Therefore

$$
\begin{gathered}
\int_{x}^{\infty} \frac{d t}{\tau^{2} \ln t}=\left[\frac{-e^{-\tau}}{\tau}\right]_{\ln x}^{\infty}-\int_{\ln x}^{\infty} \frac{e^{-\tau}}{\tau^{2}} d \tau \\
=\frac{e^{-\ln x}}{\ln x}+R \\
=\frac{1}{x \ln x}+R \\
|R|=\left|\int_{\ln x}^{\infty} \frac{e^{-\tau}}{\tau^{2}} d \tau\right| \\
\leq \int_{\ln x}^{\infty} \frac{e^{-\tau}}{\tau^{2}} d \tau \\
=\frac{1}{(\ln x)^{2}} \int_{\ln x}^{\infty}\left(\frac{\ln x}{\tau}\right)^{2} e^{-\tau} d \tau \\
\leq \frac{1}{\ln x>} \tau \\
\leq \frac{\ln x)^{2}}{\infty} \int_{\ln x}^{\infty} e^{-\tau} d \tau
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{1}{x(\ln x)^{2}} \\
& =o\left(\frac{1}{x \ln x}\right) \text { since } \ln \mathrm{x} \geq 1, \mathrm{x} \rightarrow+\infty
\end{aligned}
$$

Therefore $\int_{x}^{\infty} \sim \frac{1}{x \ln x}, x \rightarrow+\infty$
(b) This is more involves: $\tau=\ln t$ as above gives
$\int_{2}^{x} \frac{d t}{t \log (\log (t))}=\int_{\ln 2}^{\ln x} \frac{d \tau}{\log \tau}$
set $\tau_{1}=\log \tau \Rightarrow d \tau_{1}=\frac{d \tau}{\tau}$
Therefore $K=\int_{2}^{x} \frac{d t}{t \log (\log (t))}=\int_{\log (\log (2))} \log (\log (x)) \frac{d \tau_{1} e^{\tau_{1}}}{\tau_{1}}$
Now integrate by parts:

$$
\begin{aligned}
& v=\frac{1}{\tau_{1}} \quad d u=e^{\tau_{1}} \\
& d v=-\frac{1}{t_{t a u_{1}^{2}} \quad u=e^{\tau_{1}}} \begin{array}{r}
K=\left[\frac{e^{\tau_{1}}}{\tau_{1}}\right]_{\log (\log (2))}^{\log (\log (x))}+\int_{\log (\log (2))}^{\log (\log (x))} \frac{e^{\tau_{1}}}{\tau_{1}^{2}} d \tau_{1} \\
=\frac{e^{\log (\log (x))}}{\log (\log (x))}--e^{\log (\log (2))} \\
\log (\log (2))
\end{array}+\int_{\log (\log (2))}^{\log (\log (x))} \frac{e^{\tau_{1}}}{\tau_{1}^{2}} d \tau_{1} \\
& = \\
& \frac{\log x}{\log (\log (x))}-\underbrace{\log 2 \log (\log (2))}+\underbrace{O\left(\frac{\log x}{[\log (\log (x))]^{2}}\right)}
\end{aligned}
$$

just a by similar arguments to
finite number
part (a)

$$
\begin{aligned}
x & \rightarrow+\infty \\
\text { Now as } & \rightarrow+\infty \\
\log x & \rightarrow+\infty \text { (more slowly) }
\end{aligned}
$$

even so we still have
$K=\frac{\log x}{\log (\log x)}+o\left(\frac{\log x}{\log (\log x)}\right)$
so $K \sim \frac{\log x}{\log (\log x)}, \quad x \rightarrow+\infty$

