Question
Consider the integral
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At first sight, it might seem that a direct application of Watson’s lemma
should produce an asymptotic expansion for the integral. Why is this not
so? Use the change of variables ty/x = s to show that
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Answer
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Watson’s lemma requires e”i to be represented by an asymptotic power
series, with e~7 ~ agt?0 (where Ay > —1) as t — 07, say, as the dominant
term.

But lim, o+ t e~ = lim, 4o 707 = 0(7 = %) for all \g

Consequently no such expansion exists and we cannot use Watson’s lemma:
e~ tends to zero faster than any power of ¢t as t — 0% and therefore has no
power series expansion about ¢ = 0.

Use change of variable given:ty/x = s

= ds = \/x dt, so for x > 0, the integral becomes
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We're now in the Laplace ball-park with large parameter /z
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h(s) =s+~=h'(s) =1~ - = s = £1 are min/max
s s

For 0 < s < o0, s =+1 is the critical point.
h'(t) = +2 so it’s a min.



Thus we use
u? = h(s) h(1) = h(s) +2

2udu = h'(s)ds
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