Question

In steady rain, raindrops fall at 16kmh⁻¹. Draw up a table of values of the angles of raindrop streaks on train windows which would enable a passenger in the train to estimate his speed in units of 10kmh⁻¹ up to 100kmh⁻¹

Answer

We require to find the velocity of raindrops relative to the train, \mathbf{v}_{DT} . So we will use the equation $\mathbf{v}_{DT} = \mathbf{v}_D - \mathbf{v}_T$, where \mathbf{v}_D is the velocity of the raindrops and \mathbf{v}_T is the velocity of the train.

$$\mathbf{v}_{DT} = -16\mathbf{j} - \mathbf{v}_T \mathbf{i} \Rightarrow \theta = \tan^{-1} \frac{16}{\mathbf{v}_T}$$

\mathbf{v}_T	$\theta(rads)$	\mathbf{v}_T	$\theta(rads)$	\mathbf{v}_T	$\theta(rads)$
0	0	40	0.38	80	0.197
10	1.01	50	0.31	90	0.176
20	0.67	60	0.26	100	0.158
30	0.48	70	0.22		