Question

(a) Let

$$
\begin{aligned}
\mathbf{a} & =2 \mathbf{i}-3 \mathbf{j}+\mathbf{k} \\
\mathbf{b} & =\mathbf{i}-2 \mathbf{j}+4 \mathbf{k} \\
\mathbf{c} & =-\mathbf{i}+\mathbf{j}-3 \mathbf{k}
\end{aligned}
$$

Evaluate the following:

$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{b}, \quad \mathbf{a} \cdot \mathbf{c}, \quad \mathbf{b} \times \mathbf{c}, \quad \mathbf{a} \cdot \mathbf{b} \times \mathbf{c} \\
\mathbf{c} \cdot \mathbf{b} \times \mathbf{a}, \\
\mathbf{c} \times(\mathbf{b} \times \mathbf{c}), \\
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})
\end{gathered}
$$

Are \mathbf{a}, \mathbf{b}, \mathbf{c}, linearly independent?
(b) Find the equations of the two planes which contain the line

$$
x-5=\frac{y-1}{-1}=\frac{z+3}{3}
$$

and which make an angle of 60° witht the plane $y-z=0$.

Answer

(a)

$$
\begin{aligned}
\mathbf{a} & =2 \mathbf{i}-3 \mathbf{j}+\mathbf{k} \\
\mathbf{b} & =\mathbf{i}-2 \mathbf{j}+4 \mathbf{k} \\
\mathbf{c} & =-\mathbf{i}+\mathbf{j}-3 \mathbf{k}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =12 \\
\mathbf{a} \cdot \mathbf{c} & =-8 \\
\mathbf{b} \times \mathbf{c} & =(2,-1,-1) \\
\mathbf{a} \cdot \mathbf{b} \times \mathbf{c} & =6
\end{aligned}
$$

$$
\mathbf{c} \cdot \mathbf{b} \times \mathbf{a}=-\mathbf{a} \cdot \mathbf{b} \times \mathbf{c}=-6
$$

$$
\mathbf{c} \times(\mathbf{b} \times \mathbf{c})=(-4,-7,-1)
$$

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(4,4,4)
$$

Since $\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq 0 \quad \mathbf{a}, \mathbf{b}, \mathbf{c}$, are independent.
(b) Suppose the plane has equation $a x+b y+c z=k$

Then $(a, b, c) \cdot(1,-1,3)=0$
So $a-b+3 c=0$
Also $5 a+b-3 c=k \quad$ So $k=6 a$
Then $(a, b, c) \cdot(0,1,-1)=b-c$
So $b-c=\sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{2} \frac{1}{2}$
So $2 b^{2}-4 b c+2 c^{2}=a^{2}+b^{2}+c^{2}$
i.e. $b^{2}+c^{2}-a^{2}-4 b c=0$

But $a=b-3 c$
giving $2 c(b-4 c)=0$ So $c=0$ or $b=4 c$
If $b=4 c$ then $a=c$ and $b=4 a$
Giving

$$
x+4 y+z=6
$$

If $c=0$ then $a=b$
Giving

$$
x+y=6
$$

