Question

(a) Show that all the roots of the equation

$$(1+z)^{2n+1} = (1-z)^{2n+1}$$

are given by

$$\pm i \tan \left(\frac{k\pi}{2n+1}\right)$$
 $k = 0, 1, 2, \dots, n$

- (b) Let z = x + iy and w = u + iv. If $w = z^2 + 2z$ show that the line v = 2 is the image of a rectangular hyperbola in the z-plane. Sketch this hyperbola.
- (c) if w = az + b, where a = 3(1 i) and b = 2 + 3i, then describe what happens to any figure in the z-plane under this transformation.

Answer

(a)

$$(1+x)^{2n+1} = (1-x)^{2n+1}$$
So
$$\frac{1+x}{1-x} = e^{\frac{2\pi i}{2n+1}k}$$

$$x = \frac{e^{\frac{2\pi i}{2n+1}k} - 1}{e^{\frac{2\pi i}{2n+1}k} + 1}$$

$$= \frac{e^{\frac{\pi ik}{2n+1}} - e^{-\frac{\pi ik}{2n+1}}}{e^{\frac{\pi ik}{2n+1}} + e^{-\frac{\pi ik}{2n+1}}}$$

$$= i \tan \frac{\pi k}{2n+1} \quad k = -n, \dots, n$$

$$= \pm i \tan \frac{\pi k}{2n+1} \quad k = 0, \dots, n$$

(b) z = x + iy

$$w = u + iv$$

Therefore as $w = z^2 + 2z$, $u + iv = x^2 - y^2 + 2ixy + 2(x + iy)$

$$S v = 2xy + 2x$$

Thus v = 2 if and only if 2xy + 2x = 2 and y(x + 1) = 1

This is a rectangular hyperbola.

(c)

$$w = 3(1-i)z + (2+3i)$$

= $3\sqrt{2}e^{-\frac{i\pi}{4}}z + (2+3i)$

So any figure is rotated clockwise through 45°, magnified by $3\sqrt{3}$ and the translated by (2+3i)