Question

Consider the following set of simultaneous equations

$$
\begin{array}{r}
k x+y-2 z=3 \\
x-y+2 z=1 \\
-x+2 y+z=2
\end{array}
$$

If $k=0$, find the solution by matrix inversion.
Note: if you fail to show detailed working of the matrix inversion, no marks will be awarded, even if you can write down the correct answer.

Answer
$k=0$

$$
\begin{array}{r}
y-2 z=3 \\
x-y+2 z=1 \\
-x+2 y+z=2
\end{array}
$$

$\Rightarrow\left(\begin{array}{ccc}0 & 1 & -2 \\ 1 & -1 & 2 \\ -1 & 2 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$
$\mathbf{A} \cdot \mathbf{X}=\mathbf{K}$
Require \mathbf{A}^{-1}, since $\mathbf{X}=\mathbf{A}^{-1} \mathbf{K}$
Step (iii)

$$
\begin{aligned}
\triangle & =\operatorname{det} A \\
& =\left|\begin{array}{ccc}
0 & 1 & -2 \\
+1 & -1 & 2 \\
-1 & 2 & 1
\end{array}\right| \\
& =0\left|\begin{array}{cc}
-1 & 2 \\
2 & 1
\end{array}\right|-1\left|\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right|-2\left|\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right| \\
& =-1 \times(1+2)-2 \times(2-1) \\
& =-3-2 \\
& =-5
\end{aligned}
$$

so solution exists
Step (i) Cofactors of matrix are given by
$\left(\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right)=\left(\begin{array}{ccc}0 & 1 & -2 \\ 1 & -1 & 2 \\ -1 & 2 & 1\end{array}\right)$
cofactor of $A_{11}=+\left|\begin{array}{cc}-1 & 2 \\ 2 & 1 \\ 1 & 2\end{array}\right|=-5$ Following +- sign pattern
cofactor of $A_{12}=-\left|\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right|=-3$
cofactor of $A_{13}=+\left|\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right|=+1$
cofactor of $A_{21}=-\left|\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right|=-5$
cofactor of $A_{22}=+\left|\begin{array}{cc}0 & -2 \\ -1 & 1\end{array}\right|=-2$
cofactor of $A_{23}=-\left|\begin{array}{cc}0 & 1 \\ -1 & 1\end{array}\right|=-1$
cofactor of $A_{31}=+\left|\begin{array}{cc}1 & -2 \\ -1 & 2\end{array}\right|=0$
cofactor of $A_{32}=-\left|\begin{array}{cc}0 & -2 \\ 1 & 2\end{array}\right|=-2$
cofactor of $A_{33}=+\left|\begin{array}{cc}0 & 1 \\ 1 & -1\end{array}\right|=-1$
Matrix of cofactors is thus:

$$
\left(\begin{array}{ccc}
-5 & -3 & 1 \\
-5 & -2 & -1 \\
0 & -2 & -1
\end{array}\right)
$$

Step (ii)
Transpose this to get $\operatorname{adj} A$

$$
\operatorname{adj} A=\left(\begin{array}{ccc}
-5 & -3 & 1 \\
-5 & -2 & -1 \\
0 & -2 & -1
\end{array}\right)^{T}=\left(\begin{array}{ccc}
-5 & -5 & 0 \\
-3 & -2 & -2 \\
1 & -1 & -1
\end{array}\right)
$$

Step (iv)

$$
\begin{aligned}
& A^{-1}=\frac{\operatorname{adj} A}{\operatorname{det} A}=\frac{1}{-5}\left(\begin{array}{ccc}
-5 & -5 & 0 \\
-3 & -2 & -2 \\
1 & -1 & -1
\end{array}\right) \\
& \text { Hence } \mathbf{A}=-\frac{1}{2}\left(\begin{array}{ccc}
-5 & -5 & 0 \\
-3 & -2 & -2 \\
1 & -1 & -1
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
2
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-\frac{1}{5}\left(\begin{array}{c}
-20 \\
-15 \\
0
\end{array}\right)=\left(\begin{array}{l}
4 \\
3 \\
0
\end{array}\right)
\end{aligned}
$$

