Question

(i) Convert the cartesian equation of the plane

$$
x-2 y+2 z=5
$$

into a vector equation of the form $\mathbf{r} \cdot \hat{\mathbf{n}}=\mathbf{d}$, where $\hat{\mathbf{n}}$ is a unit vector.
What is the geometric significance of $\hat{\mathbf{n}}$?
State the perpendicular distance of the plane from the origin.
(ii) Find the intersections (if any) of the above plane with the following lines
(a) $\mathbf{r}=-5 \mathbf{i}+3 \mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})$
(b) $\mathbf{r}=6 \mathbf{i}+\mathbf{j}+\mathbf{k}+\mu(2 \mathbf{i}+\mathbf{j})$

Comment on result of (b).

Answer

(i) $x-2 y+2 z=5$

Set $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and we have

$$
\mathbf{r} \cdot(\underbrace{\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}})=5
$$

This is not a unit vector
so

$$
\begin{aligned}
\hat{\mathbf{n}} & =\frac{\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}}{|\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}|} \\
& =\frac{\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}}{\sqrt{1+4+4}} \\
& =\frac{1}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{2}{3} \mathbf{k}
\end{aligned}
$$

so divide both sides by 3 and get

$$
\mathbf{r} \cdot(\underbrace{\frac{1}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{2}{3} \mathbf{k}})=\underbrace{\frac{5}{3}}
$$

$\hat{\mathbf{r}} d$
$\hat{\mathbf{n}}$ is a unit normal to the plane
d is the perpendicular distance of the plane from the origin.
So here $d=\frac{5}{3}$
(ii) (a) We have

$$
\begin{aligned}
& {[-\mathbf{i}+3 \mathbf{j}-\mathbf{k}+\lambda(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k})] \cdot\left[\frac{1}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{2}{3} \mathbf{k}\right]=\frac{5}{3}} \\
& \Rightarrow(-5+\lambda, 3-2 \lambda,-1+2 \lambda) \cdot\left(\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right)=\frac{5}{3} \\
& \Rightarrow \frac{-5+\lambda}{3}-\frac{2}{3}(3-2 \lambda)+\frac{2}{3}(-1+2 \lambda)=\frac{5}{3} \\
& \Rightarrow-5+\lambda-6+4 \lambda-2+4 \lambda=5 \\
& \Rightarrow 9 \lambda=18 \\
& \Rightarrow \underline{\lambda}=2
\end{aligned}
$$

So there exists a single intersection point of line and plane at

$$
\begin{aligned}
\mathbf{r} & =-5 \mathbf{i}+3 \mathbf{j}-\mathbf{k}+2(\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}) \\
& =-3 \mathbf{i}-\mathbf{j}+3 \mathbf{k}
\end{aligned}
$$

(b) We have

$$
[(6+2 \mu) \mathbf{i}+(1+\mu) \mathbf{j}+\mathbf{k}] \cdot\left[\frac{1}{3} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{2}{3} \mathbf{k}\right]=\frac{5}{3}
$$

Therefore $6+2 \mu-2(1+\mu)+2=5$
Therefore $6+2 \mu-2-2 \mu+2=5$
$\Rightarrow 6=5!$!
Therefore no value of μ can satisfy this equation so no intersection. Line must be parallel to plane.

