Question

Let the vertices of a triangle $A B C$ have the following position vectors relative to some origin O :

$$
\begin{array}{r}
\mathrm{OA}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}, \\
\mathrm{OB}=2 \mathbf{i}+\mathbf{j}, \\
\mathrm{OC}=\mathbf{i}-\mathbf{j}+2 \mathbf{k} .
\end{array}
$$

(i) Show these vectors and the triangle on a rough sketch.
(ii) Find the angle between $\mathbf{A B}$ and $\mathbf{A C}$. Repeat the calculation for $\mathbf{B A}$ and BC. Hence deduce the three angles within the triangle.
(iii) Calculate the area of the triangle $A B C$ using an appropriate vector product.

Answer

(i)

$$
\mathrm{OB}=2 \mathbf{i}+\mathbf{j}+0 \mathbf{k}
$$

(or topologically equivalent...)
(ii)

$$
\begin{aligned}
\mathbf{A B}=\mathbf{A O}+\mathbf{O B} & =-\mathbf{O A}+\mathbf{O B} \\
& =-\mathbf{i}-2 \mathbf{j}-\mathbf{k}+2 \mathbf{i}+\mathbf{j} \\
& =\mathbf{i}-\mathbf{j}-\mathbf{k} \\
\mathbf{A C}=\mathbf{O C}-\mathbf{O A} & =\mathbf{i}-\mathbf{j}+2 \mathbf{k}-\mathbf{i}-2 \mathbf{j}-\mathbf{k} \\
& =-3 \mathbf{j}+\mathbf{k}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{BC}=\mathrm{OC}-\mathrm{OB} & =\mathbf{i}-\mathbf{j}+2 \mathbf{k}-2 \mathbf{i}-\mathbf{j} \\
& =-\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}
\end{aligned}
$$

$\angle C A B$ given by

$$
\begin{aligned}
\mathbf{A C} \cdot \mathbf{A B} & =|\mathbf{A C}||\mathbf{A B}| \cos (\angle C A B) \\
\mathbf{A C} \cdot \mathbf{A B} & =(0,-3,1) \cdot(+1,-1,-1) \\
& =+3-1 \\
& =+2
\end{aligned}
$$

$|\mathbf{A C}|=\sqrt{0^{2}+9+1}=\sqrt{10}$
$|\mathbf{A B}|=\sqrt{1+1+1}=\sqrt{3}$
Therefore $\cos (\angle C A B)=\frac{+2}{\sqrt{10} \sqrt{3}}=\frac{+2}{\sqrt{30}}=0.51639$
$\Rightarrow \angle C A B=\arccos \left(\frac{+2}{\sqrt{30}}\right)=68.583^{\circ}$
$\mathbf{B A}=-\mathbf{A B}=-\mathbf{i}+\mathbf{j}+\mathbf{k} ; \mathbf{B C}=-\mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$
Therefore $\mathbf{B A} \cdot \mathbf{B C}=(-1,1,1)(-1,-2,2)=1-2+2=1$
$|\mathrm{AB}|=\sqrt{3}$
$|\mathbf{A B}|=\sqrt{1+4+4}=3$
Therefore $\angle C B A=\arccos \left(\frac{1}{3 \sqrt{3}}\right)=\arccos (0.19245)=78.904^{\circ}$
$\angle B C A=180-\arccos \left(\frac{2}{\sqrt{30}}\right)-\arccos \left(\frac{1}{3 \sqrt{3}}\right)=32.51$
(iii)

$$
\begin{aligned}
\text { Area of } \nabla & =\frac{1}{2}|\mathbf{A B} \times \mathbf{A C}| \\
& =\frac{1}{2}\left\|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & -1 \\
0 & -3 & 1
\end{array}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}|\mathbf{i}| \begin{array}{cc}
-1 & -1 \\
-3 & 1
\end{array}|-\mathbf{j}| \begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}|+\mathbf{k}| \begin{array}{cc}
1 & -1 \\
0 & -3
\end{array}| | \\
& =\frac{1}{2}|-4 \mathbf{i}-\mathbf{j}-3 \mathbf{k}| \\
& =\frac{1}{2} \sqrt{16+1+9} \\
& =\frac{\sqrt{26}}{2}=\sqrt{\frac{13}{2}}=2.549
\end{aligned}
$$

