Question

(i) Find the general solution of the equation

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=0
$$

(ii) Use the result of part (i) to find the solution of

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=2 e^{-3 x}
$$

where $y=1$ and $\frac{d y}{d x}=-3$ when $x=0$.

Answer

(i) Use trial function $y=A e^{k x}$

$$
\Rightarrow \frac{d y}{d x}=A k e^{k x}, \frac{d^{2} y}{d x^{2}}=A k^{2} e^{k x}
$$

Therefore auxiliary equation is

$$
\begin{aligned}
& k^{2}+4 k+5=0 \\
& \Rightarrow k=\frac{-4 \pm \sqrt{16-20}}{2} \\
&=-2 \pm \frac{2 i}{2} \\
&=-2 \pm i
\end{aligned}
$$

Therefore general solution is of the form

$$
y=A e^{-2 x+i x}+B e^{-2 x-i x}
$$

or

$$
y=e^{-2 x}(C \cos x+D \sin x)
$$

C, D constants
(ii) This is the same equation as (i) but with forcing term $2 e^{-3 x}$ on $R H S$ Therefore

$$
y=y_{C F}+y_{P I}
$$

where $y_{C F}$ satisfies

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=0
$$

Thus from (i)

$$
y_{C F}=e^{-2 x}(C \cos x+D \sin x)
$$

For $y_{P I}$ try

$$
y_{P I}=A e^{-3 x}
$$

and substitute in full equation
$y_{P I}^{\prime}=-3 A e^{-3 x}, y_{P I}^{\prime \prime}=+9 A e^{-3 x}$
Therefore

$$
\begin{aligned}
9 A e^{-3 x}-4 \times 3 A e^{-3 x}+5 A e^{-3 x} & =2 e^{-3 x} \\
\Rightarrow 2 A e^{-3 x} & =2 e^{-3 x} \\
\Rightarrow A & =1
\end{aligned}
$$

Therefore

$$
y_{P I}=e^{-3 x}
$$

Thus the general solution is

$$
y=e^{-2 x}(C \cos x+D \sin x)+e^{-3 x}
$$

Specific solution from boundary conditions:
$y=1, x=0$
$\Rightarrow 1=1(C+0)+1$
$\Rightarrow C=0$
Therefore $y=D e^{-2 x} \sin x+e^{-3 x}$

So
$\frac{d y}{d x}=D\left(-2 e^{-2 x} \sin x+e^{-2 x} \cos x\right)-3 e^{-3 x}$
$\frac{d y}{d x}=-3$ when $x=0$
$\Rightarrow-3=D(0+1)-3$
$\Rightarrow D=0$
Therefore $\underline{y=e^{-3 x}}$ is the specific solution.

