Question

State the order and degree of the following differential equations, identify their type and hence solve them.
(i) $\frac{d y}{d x}=x y$, where $y=3$ when $x=0$;
(ii) $\frac{d y}{d x}-2 x y=\frac{e^{x^{2}}}{1+x}$, where $y=0$ when $x=0$.

Answer
Both are first order first degree.
(i) This is V.S.

$$
\begin{aligned}
& \frac{d y}{d x}=x y \\
\Rightarrow & \int \frac{d y}{y}=\int x d x \\
\Rightarrow & \ln y=\frac{x^{2}}{2}+C \\
\Rightarrow & y=A e^{\frac{x^{2}}{2}} \\
y=3 \text { when } \mathrm{x}=0 & \Rightarrow 3=A e^{0}=A
\end{aligned}
$$

Therefore $\underline{y=3 e^{\frac{x^{2}}{2}}}$
(ii) This is linear

$$
\frac{d y}{d x}-2 x y=\frac{e^{x^{2}}}{1+x}
$$

Integrating factor $=e^{\int-2 x d x}=e^{-x^{2}}$
Therefore $e^{-x^{2}} \frac{d y}{d x}-2 x e^{-x^{2}} y=e^{-x^{2}} \frac{e^{-x^{2}}}{1+x}$
$\Rightarrow \frac{d}{d x}\left\{y e^{-x^{2}}\right\}=\frac{1}{1+x}$
Therefore

$$
\begin{aligned}
y e^{-x^{2}}=\int \frac{d x}{1+x} & \\
& =\log (1+x)+c
\end{aligned}
$$

Therefore $y=e^{x^{2}}[\log (1+x)+c]$
$y=0$ when $x=0$
$\Rightarrow \begin{aligned} 0 & =e^{0}[\log 1+c] \\ 0 & =c\end{aligned}$
Therefore $\underline{y=e^{x^{2}} \log (1+x)}$

