QUESTION

Consider the points $L=(1,1,1), M=(1,-1,2)$ and $N=(-1,2,3)$.
(i) Write down the vectors $\mathbf{u}=L M$ and $\mathbf{v}=L N$ and find their lengths.
(ii) Calculate the dot product $\mathbf{u} \cdot \mathbf{v}$ and the angle θ between \mathbf{u} and \mathbf{v}.
(iii) Compute the cross product $\mathbf{u} \times \mathbf{v}$ and use it to write down the vector equation of the plane Π_{1} containing the three point L, M, n. What is the equation of the plane in terms of x, y, z coordinates?
(iv) Write down the vector equation of the plane Π_{2} parallel to Π_{1} and passing through the origin. Find the distance between the planes Π_{1} and Π_{2}.

ANSWER
(i) $\mathbf{u}=(0,-2,1),|\mathbf{u}|=\sqrt{5} \quad \mathbf{v}=(-2,1,2),|\mathbf{v}|=3$
(ii) $\mathbf{u . v}=0$ so $\theta=\frac{\pi}{2}$
(iii) $\mathbf{u} \times \mathbf{v}=(-5,-2,-4)$
Π_{1} has equation $(-5,-2,-4) \cdot(\mathbf{x}-(1,1,1))=0$ so $5 x+2 y+4 z=11$
(iv) Π_{2} has equation $\mathbf{v} .\left(\begin{array}{l}5 \\ 2 \\ 4\end{array}\right)=5 x+2 y+4 z=0$

Distance between the two planes $=|r(\mathbf{u} \times \mathbf{v})|$ where $(-5 r,-2 r,-4 r)$ lies on Π_{1} so $r=\frac{-11}{45}$ hence $\left\lvert\, r\left(\mathbf{u} \times \mathbf{v} \left\lvert\,=\frac{11}{\sqrt{45}}\right.\right.$. \right.

