QUESTION

(i) Sketch the region defined by the inequalities:

$$0 \le x \le \pi, \ 0 \le y \le 2\pi, \ 0 \le z \le \frac{\pi}{2}.$$

- (ii) If the region is occupied by a solid S with density at any point (x, y, z) given by the formula $2xy^2 \cos z$, compute the total mass of the region S by evaluating an appropriate triple integral.
- (iii) The region S is divided by the plane x = ay (where a is a constant $0 < a < \frac{1}{2}$) into two regions: the region S_1 contains the point $(\pi, 0, 0)$ and the region S_2 contains the point $(0, 2\pi, 0)$. Sketch the two regions S_1 and S_2 , and find the mass of S_1 in terms of a.
- (iv) Using your answers to parts (i) and (ii), find the mass of the upper part S_2 , again in terms of a, and find the value of a for which the two regions have equal mass.

ANSWER

(i)

(ii)
Mass =
$$\int_0^{2\pi} y^2 dy \int_0^{\pi} 2x dx \int_0^{\frac{\pi}{2}} \cos z dz$$

= $\left[\frac{y^3}{3}\right]_0^{2\pi} \left[x^2\right]_0^{\pi} [\sin z]_0^{\frac{\pi}{2}}$
= $8\pi^5$

(iii)

Mass of
$$S_1$$
 = $\int_{x=0}^{\pi} \int_{y=0}^{\frac{x}{a}} \int_{z=0}^{\frac{\pi}{2}} y^2 2x \cos z \, dz \, dy \, dx$
= $\int_{x=0}^{\pi} \int_{y=0}^{\frac{x}{a}} [\sin z]_0^{\frac{\pi}{2}} y^2 2x \, dy \, dx$
= $\int_{x=0}^{\pi} \int_{y=0}^{\frac{x}{a}} 2xy^2 \, dy \, dx$
= $\int_{x=0}^{\pi} \left[2x \frac{y^3}{3} \right]_{y=0}^{\frac{x}{a}} \, dx$
= $\int_0^{\pi} \frac{2x^4}{3a^3} \, dx$
= $\left[\frac{2x^5}{15a^3} \right]_0^{\pi} = \frac{2\pi^5}{15a^3}$

(iv) mass of
$$S_2 = \left(\frac{8}{3} - \frac{2}{15a^3}\right)\pi^5$$

mass $(S_1) = \text{mass } (S_2) \Leftrightarrow \frac{4}{15a^3} = \frac{8}{3} \Leftrightarrow a^3 = \frac{1}{10} \text{ or } a = \frac{1}{\sqrt[3]{10}}$