QUESTION
(i) Sketch the region defined by the inequalities:

0<z<m 0<y<2m, ogzgg.

(ii) If the region is occupied by a solid S with density at any point (z,y, 2)
given by the formula 2292 cos z, compute the total mass of the region
S by evaluating an appropriate triple integral.

(iii) The region S is divided by the plane = = ay (where a is a constant
0 < a < 3) into two regions: the region S; contains the point (m,0,0)
and the region Sy contains the point (0,27, 0). Sketch the two regions
S1 and Ss, and find the mass of S; in terms of a.

(iv) Using your answers to parts (i) and (ii), find the mass of the upper
part Sy, again in terms of a, and find the value of a for which the two
regions have equal mass.
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