QUESTION

(i) Sketch the region defined by the inequalities:

$$
0 \leq x \leq \pi, 0 \leq y \leq 2 \pi, 0 \leq z \leq \frac{\pi}{2}
$$

(ii) If the region is occupied by a solid S with density at any point (x, y, z) given by the formula $2 x y^{2} \cos z$, compute the total mass of the region S by evaluating an appropriate triple integral.
(iii) The region S is divided by the plane $x=a y$ (where a is a constant $0<a<\frac{1}{2}$) into two regions: the region S_{1} contains the point $(\pi, 0,0)$ and the region S_{2} contains the point $(0,2 \pi, 0)$. Sketch the two regions S_{1} and S_{2}, and find the mass of S_{1} in terms of a.
(iv) Using your answers to parts (i) and (ii), find the mass of the upper part S_{2}, again in terms of a, and find the value of a for which the two regions have equal mass.
ANSWER

(i)
(ii)

$$
\begin{aligned}
\text { Mass } & =\int_{0}^{2 \pi} y^{2} d y \int_{0}^{\pi} 2 x d x \int_{0}^{\frac{\pi}{2}} \cos z d z \\
& =\left[\frac{y^{3}}{3}\right]_{0}^{2 \pi}\left[x^{2}\right]_{0}^{\pi}[\sin z]_{0}^{\frac{\pi}{2}} \\
& =\frac{8 \pi^{5}}{3}
\end{aligned}
$$

(iii)

$$
\begin{aligned}
\text { Mass of } S_{1} & =\int_{x=0}^{\pi} \int_{y=0}^{\frac{x}{a}} \int_{z=0}^{\frac{\pi}{2}} y^{2} 2 x \cos z d z d y d x \\
& =\int_{x=0}^{\pi} \int_{y=0}^{\frac{x}{a}}[\sin z]_{0}^{\frac{\pi}{2}} y^{2} 2 x d y d x \\
& =\int_{x=0}^{\pi} \int_{y=0}^{\frac{x}{a}} 2 x y^{2} d y d x \\
& =\int_{x=0}^{\pi}\left[2 x \frac{y^{3}}{3}\right]_{y=0}^{\frac{x}{a}} d x \\
& =\int_{0}^{\pi} \frac{2 x^{4}}{3 a^{3}} d x \\
& =\left[\frac{2 x^{5}}{15 a^{3}}\right]_{0}^{\pi}=\frac{2 \pi^{5}}{15 a^{3}}
\end{aligned}
$$

(iv) mass of $S_{2}=\left(\frac{8}{3}-\frac{2}{15 a^{3}}\right) \pi^{5}$ mass $\left(S_{1}\right)=\operatorname{mass}\left(S_{2}\right) \Leftrightarrow \frac{4}{15 a^{3}}=\frac{8}{3} \Leftrightarrow a^{3}=\frac{1}{10}$ or $a=\frac{1}{\sqrt[3]{10}}$

