Question

The height of the ground in kilometers near an extinct volcano is given by the formula :

$$
h=\exp \left(-\left(x^{2}+y^{2}-0.25\right)^{2}\right)
$$

where x and y are the distances in kilometers from the centre of the crater in the north and east directions respectively.
Let $x=r \cos \theta$ and $y=r \sin \theta$.
(a) Derive a formula for $\frac{\partial h}{\partial \theta}$, and show that $\frac{\partial h}{\partial \theta}=0$. What is the physical meaning of this result?
(b) Find a general formula for $\frac{\partial h}{\partial r}$, and show that $\frac{\partial h}{\partial r}=0$ for $r=0$ and $r=0.5$. What is the physical meaning of this result?

Answer
(a) $x=r \cos \theta \Rightarrow \frac{\partial x}{\partial \theta}=-r \sin \theta=-y$ $y=r \sin \theta \Rightarrow \frac{\partial y}{\partial \theta}=r \cos \theta=x$
Chain rule $\Rightarrow \frac{\partial h}{\partial \theta}=\frac{\partial h}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial h}{\partial y} \frac{\partial y}{\partial \theta}$
with

$$
\begin{aligned}
h & =\exp \left(-\left(x^{2}+y^{2}-0.25\right)^{2}\right) \\
\frac{\partial h}{\partial x} & =-4 x\left(x^{2}+y^{2}-0.25\right) \exp \left(-\left(x^{2}+y^{2}-0.25\right)^{2}\right) \\
\frac{\partial h}{\partial y} & =-4 y\left(x^{2}+y^{2}-0.25\right) \exp \left(-\left(x^{2}+y^{2}-0.25\right)^{2}\right)
\end{aligned}
$$

substituting :

$$
\begin{aligned}
\frac{\partial h}{\partial \theta} & =-4\left(x^{2}+y^{2}-0.25\right) \exp \left(-\left(x^{2}+y^{2}-0.25\right)^{2}\right) \times(-x y+x y) \\
& \equiv 0
\end{aligned}
$$

Physical meaning: (r, θ) are polar coordinates.
We can rewrite $h=\exp \left(-\left(r^{2}-0.25\right)^{2}\right)$. This is independent of the angle θ, so we expect the height to be independent of the angle θ, and the derivative with respect to θ to be zero.
(b) Chain rule $\Rightarrow \frac{\partial h}{\partial r}=\frac{\partial h}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial h}{\partial y} \frac{\partial y}{\partial r}$
$x=r \cos \theta \Rightarrow \frac{\partial x}{\partial r}=\cos \theta=\frac{x}{r}$
$y=r \sin \theta \Rightarrow \frac{\partial y}{\partial r}=\sin \theta=\frac{y}{r}$
Substituting:

$$
\begin{aligned}
\frac{\partial h}{\partial r} & =-4\left(x^{2}+y^{2}-0.25\right) \exp \left(-\left(x^{2}+y^{2}-0.25\right)^{2}\right) \times\left(x \frac{x}{r}+y \frac{y}{r}\right) \\
& =\frac{-4\left(x^{2}+y^{2}\right)}{r}\left(x^{2}+y^{2}-0.25\right) \exp \left(-\left(x^{2}+y^{2}-0.25\right)^{2}\right)
\end{aligned}
$$

Now $x=r \cos \theta, y=r \sin \theta \Rightarrow x^{2}+y^{2}=r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r^{2}$
Hence

$$
\frac{\partial h}{\partial r}=-4 r\left(r^{2}-0.25\right) \exp \left(-\left(r^{2}-0.25\right)^{2}\right)
$$

From the formula $\frac{\partial h}{\partial r}=0$ if $r=0$ or $r^{2}=0.25 \Rightarrow r=0.5$
The height has a minimum at the centre of crater $(r=0)$
The height has maxima at all points on the rim of the crater $(r=0.5)$

