Question

The height of the ground in kilometers near an extinct volcano is given by the formula:

$$h = \exp\left(-(x^2 + y^2 - 0.25)^2\right)$$

where x and y are the distances in kilometers from the centre of the crater in the north and east directions respectively.

Let $x = r \cos \theta$ and $y = r \sin \theta$.

- (a) Derive a formula for $\frac{\partial h}{\partial \theta}$, and show that $\frac{\partial h}{\partial \theta} = 0$. What is the physical meaning of this result?
- **(b)** Find a general formula for $\frac{\partial h}{\partial r}$, and show that $\frac{\partial h}{\partial r} = 0$ for r = 0 and r = 0.5. What is the physical meaning of this result?

Answer

(a)
$$x = r \cos \theta \Rightarrow \frac{\partial x}{\partial \theta} = -r \sin \theta = -y$$

 $y = r \sin \theta \Rightarrow \frac{\partial y}{\partial \theta} = r \cos \theta = x$
Chain rule $\Rightarrow \frac{\partial h}{\partial \theta} = \frac{\partial h}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial h}{\partial y} \frac{\partial y}{\partial \theta}$
with

$$h = \exp\left(-(x^2 + y^2 - 0.25)^2\right)$$

$$\frac{\partial h}{\partial x} = -4x(x^2 + y^2 - 0.25) \exp\left(-(x^2 + y^2 - 0.25)^2\right)$$

$$\frac{\partial h}{\partial y} = -4y(x^2 + y^2 - 0.25) \exp\left(-(x^2 + y^2 - 0.25)^2\right)$$

substituting:

$$\frac{\partial h}{\partial \theta} = -4(x^2 + y^2 - 0.25) \exp\left(-(x^2 + y^2 - 0.25)^2\right) \times (-xy + xy)$$

$$\equiv 0$$

Physical meaning: (r, θ) are polar coordinates.

We can rewrite $h = \exp(-(r^2 - 0.25)^2)$. This is independent of the angle θ , so we expect the height to be independent of the angle θ , and the derivative with respect to θ to be zero.

(b) Chain rule
$$\Rightarrow \frac{\partial h}{\partial r} = \frac{\partial h}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial h}{\partial y} \frac{\partial y}{\partial r}$$

$$x = r \cos \theta \Rightarrow \frac{\partial x}{\partial r} = \cos \theta = \frac{x}{r}$$

$$y = r \sin \theta \Rightarrow \frac{\partial y}{\partial r} = \sin \theta = \frac{y}{r}$$

Substituting:

$$\frac{\partial h}{\partial r} = -4(x^2 + y^2 - 0.25) \exp\left(-(x^2 + y^2 - 0.25)^2\right) \times \left(x\frac{x}{r} + y\frac{y}{r}\right)$$
$$= \frac{-4(x^2 + y^2)}{r}(x^2 + y^2 - 0.25) \exp\left(-(x^2 + y^2 - 0.25)^2\right)$$

Now $x = r \cos \theta$, $y = r \sin \theta \Rightarrow x^2 + y^2 = r^2(\cos^2 \theta + \sin^2 \theta) = r^2$

Hence

$$\frac{\partial h}{\partial r} = -4r(r^2 - 0.25) \exp(-(r^2 - 0.25)^2)$$

From the formula $\frac{\partial h}{\partial r} = 0$ if r = 0 or $r^2 = 0.25 \Rightarrow r = 0.5$

The height has a minimum at the centre of crater (r=0)

The height has maxima at all points on the rim of the crater (r = 0.5)