Question

Determine all the circles in $\overline{\mathbf{C}}$ that are taken to themselves by the Möbius transformation $m(z)=\frac{3 z-2}{2 z-1}$. (That is, determine all the circles A in $\overline{\mathbf{C}}$ satisfying $m(A)=A$.)

Answer

First, find the fixed points and the type of m :
$m(z)=\frac{3 z-2}{2 z-1} \operatorname{det}(m)=-3+4=1$, so m is already normalized.
$\tau(m)=(3-1)^{2}=4$ and so m is parabolic.
Fixed point:

$$
\begin{aligned}
& m(z)=z \\
& 2 z^{2}-z=3 z-2 \\
& 2 z^{2}-4 z+2=0 \\
& z^{2}-2 z+1=0 \\
& (z-1)^{2}=0 \text { so } \mathrm{m}(1)=1
\end{aligned}
$$

Since the coefficients of m are real, $m(\mathbf{R})=\mathbf{R}$. If A is a circle in $\overline{\mathbf{C}}$ intersecting \mathbf{R} in two points ($1=$ fixed point of m and z_{0}), then $m(A) \neq A$ since $m\left(z_{0}\right) \neq z_{0}$. If A is a circle in $\overline{\mathbf{C}}$ which is tangent to \mathbf{R} at 1 , then $m(A)=A$. So, the circles taken to themselves by m are \mathbf{R} and any circle in \mathbf{C} tangent to \mathbf{R} at 1 .

