Question

Let m(z) be a loxodromic Mdbius transformation that does not fix co. The
isometric circle of m is the circle {z € C | |m/(z)| = 1}, where m/(z) is the
derivative of m(z) in terms of z. Prove the following statement, or give a
counterexample: the isometric circle of a loxodromic Mobius transformation
(not fixing co) m(z) is always disjoint from the isometric circle of its inverse
m~1(z).

[Hint: use the standard form for a loxodromic Mobius transformation, and
try calculating a few specific numerical examples.]

Answer
The standard form of a loxodromic fixing x, y with multiplier &2 is
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This is the isometric circle of m.




[((m=1)'(2)] = 1:
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Isometric circle of m™!(z).
Distance between centers:
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Circles are disjoint if and only if distance between centers is greater than
sum of radii:
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There are complex numbers k so that |k| > 1 and |k + k'] > 2 and so there
are loxodromic m(z) for which the isometric circles of m and m™" are not
disjoint. (Note that the conditions on m for this are independent of the fixed
points.)

ie [k+k>2




