Question

Find an integrating factor and hence solve the equation

$$
\left(2 x y+x^{2} y+\frac{1}{3} y^{3}\right) d x+\left(x^{2}+y^{2}\right) d y=0
$$

Answer

$$
\begin{gathered}
\left(2 x y+x^{2} y+\frac{1}{3} y^{3}\right) d x+\left(x^{2}+y^{2}\right) d y=0 \\
P=2 x y+x^{2} y+\frac{1}{3} y^{3} \quad Q=x^{2}+y^{2} \\
\frac{\partial P}{\partial y}=2 x+x^{2}+y^{2} \quad \frac{\partial Q}{\partial x}=2 x
\end{gathered}
$$

So $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ so not exact.
However it fails to be exact by $\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}=x^{2}+y^{2}=Q$ so multiply by e^{x}

$$
\left(2 x y+x^{2} y+\frac{1}{3} y^{3}\right) e^{x} d x+\left(x^{2}+y^{2}\right) e^{x} d y=0
$$

NOW

$$
\begin{aligned}
\tilde{P} & =\left(2 x y+x^{2} y+\frac{1}{3} y^{3}\right) e^{x} \quad \tilde{Q}=\left(x^{2}+y^{2}\right) e^{x} \\
\frac{\partial \tilde{P}}{\partial y} & =\left(2 x+x^{2}+y^{2}\right) e^{x} \quad \frac{\partial \tilde{Q}}{\partial x}=\left(2 x+x^{2}+y^{2}\right) e^{x}
\end{aligned}
$$

So $\frac{\partial \tilde{P}}{\partial y}=\frac{\partial \tilde{Q}}{\partial x}$ and the equation is now exact.
So try and find $F(x, y)$ such that:

$$
\begin{align*}
& \frac{\partial F}{\partial x}=\tilde{P}=\left(2 x y+x^{2} y+\frac{1}{3} y^{3}\right) e^{x} \tag{1}\\
& \frac{\partial F}{\partial y}=\tilde{Q}=\left(x^{2}+y^{2}\right) e^{x} \tag{2}
\end{align*}
$$

Integrating (2) gives

$$
\begin{aligned}
F & =\left(x^{2} y+\frac{1}{3} y^{3}\right) e^{x}+f(x) \\
\frac{\partial F}{\partial x} & =\left(2 x y+x^{2} y+\frac{1}{3} y^{3}\right) e^{x}+f^{\prime}(x) \\
& \Rightarrow f^{\prime}(x)=0 \Rightarrow f(x)=c \\
\text { so } F & =\left(x^{2} y+\frac{1}{3} y^{3}\right) e^{x}+c
\end{aligned}
$$

and the solution is $F(x, y)=$ constant.

$$
\text { i.e. } \quad\left(x^{2} y+\frac{1}{3} y^{3}\right) e^{x}=K
$$

