Question

Find an integrating factor and hence solve the equation

$$\left(2xy + x^2y + \frac{1}{3}y^3\right)dx + (x^2 + y^2)dy = 0$$

Answer

$$\left(2xy + x^2y + \frac{1}{3}y^3\right)dx + (x^2 + y^2)dy = 0$$

$$P = 2xy + x^2y + \frac{1}{3}y^3 \qquad Q = x^2 + y^2$$

$$\frac{\partial P}{\partial y} = 2x + x^2 + y^2 \qquad \frac{\partial Q}{\partial x} = 2x$$

So $\frac{\partial P}{\partial y} \neq \frac{\partial Q}{\partial x}$ so not exact.

However it fails to be exact by $\frac{\partial P}{\partial y} - \frac{\partial Q}{\partial x} = x^2 + y^2 = Q$ so multiply by e^x

$$\left(2xy + x^2y + \frac{1}{3}y^3\right)e^x dx + (x^2 + y^2)e^x dy = 0$$

NOW

$$\tilde{P} = \left(2xy + x^2y + \frac{1}{3}y^3\right)e^x \qquad \tilde{Q} = (x^2 + y^2)e^x$$

$$\frac{\partial \tilde{P}}{\partial y} = (2x + x^2 + y^2)e^x \qquad \frac{\partial \tilde{Q}}{\partial x} = (2x + x^2 + y^2)e^x$$

So $\frac{\partial \tilde{P}}{\partial y} = \frac{\partial \tilde{Q}}{\partial x}$ and the equation is now exact.

So try and find F(x, y) such that:

$$\frac{\partial F}{\partial x} = \tilde{P} = (2xy + x^2y + \frac{1}{3}y^3)e^x \tag{1}$$

$$\frac{\partial F}{\partial y} = \tilde{Q} = (x^2 + y^2)e^x \tag{2}$$

Integrating (2) gives

$$F = (x^2y + \frac{1}{3}y^3)e^x + f(x)$$

$$\frac{\partial F}{\partial x} = (2xy + x^2y + \frac{1}{3}y^3)e^x + f'(x)$$

$$\Rightarrow f'(x) = 0 \Rightarrow f(x) = c$$
so
$$F = (x^2y + \frac{1}{3}y^3)e^x + c$$

and the solution is F(x, y) = constant.

i.e.
$$\left(x^2y + \frac{1}{3}y^3\right)e^x = K$$