QUESTION

Let C denote the unit circle $z=e^{i \theta} \quad(-\pi<\theta \leq \pi)$. Show that for any real constant a

$$
\int_{C} \frac{e^{a z}}{z} d z=2 \pi i
$$

and then by writing the integral in terms of θ derive the formula

$$
\int_{0}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=\pi
$$

ANSWER
In $\left(^{*}\right), f(z)=e^{a z}, b=0$. Thus $\int_{C} \frac{e^{a} z}{z}=2 \pi i e^{0}=2 \pi i$. As C is the unit circle that can be parameterized as $\left\{e^{i \theta} \mid-\pi<\theta \leq \pi\right\}$ We put $z=e^{i \theta}=$ $\cos \theta+i \sin \theta$ and get $\int_{-\pi}^{\pi} e^{a(\cos \theta+i \sin \theta)} d \theta=2 \pi$. Hence $\int_{-\pi}^{\pi} e^{a \cos \theta} e^{i a \sin \theta} d \theta=2 \pi$. Thus

$$
\int_{-\pi}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta+i \int_{-\pi}^{\pi} e^{a \cos \theta} \sin (a \sin \theta) d \theta=2 \pi
$$

Now equate real parts and use the fact that the first integrand is even to get the solution.

