QUESTION

Let C denote any simple closed contour taken in the counterclockwise sense and write

$$
g(w)=\int_{C} \frac{z^{3}+2 z}{(z-w)^{3}} d z
$$

Show that $g(w)=6 \pi i w$ when w is inside C and $g(w)=0$ when w is outside C.
ANSWER
In $\left(^{*}\right)$ we want $n=2, f(z)=z^{3}+2 z$ and $w=b . f^{\prime \prime}(z)=6 z$, so $g(w)=$ $\frac{2 \pi i}{2!} 6 w=6 \pi i w$ if w lies inside C. If w lies inside C then $g(w)=0$ by Cauchy's Theorem.

