QUESTION

Find the value of the integral of g(z) around the circle |z - i| = 2 where

(a)
$$g(z) = \frac{1}{z^2+4}$$

(b)
$$g(z) = \frac{1}{(z^2+4)^2}$$

ANSWER

Here C is the circle |z-i|=2. The singular points of g(z) in both cases are 2i and -2i, and 2i lies within C whilst -2i lies outside C. Thus

(a)
$$\int_C \frac{dz}{z^2 + 4} = \int_C \frac{dz}{(z + 2i)(z - 2i)} = \int_C \frac{f(z)}{z - 2i},$$

where $f(z) = \frac{1}{z+2i}$. Thus the integral is equal to $2\pi i (f(2i)) = \frac{\pi}{2}$

(b) By the same method we find that the integral is equal to $\int_C \frac{h(z)dz}{(z-2i)^2}$ where $h(z) = \frac{1}{(z+2i)^2}$. Thus by the Cauchy integral formula ((*) with n = 1)the answer is $2\pi i h'(2i) = \frac{\pi}{16}$.