
QUESTION

(a) Describe how artificial arcs are used in the network simplex method.
Suppose that artificial arcs remain in the tree solution at the end of
phase 1 of the two-phase network simplex method. State the conditions
under which phase 2 should be performed, and describe what happens
to these artificial arcs in phase 2.

(b) Show that the following linear programming problem can be formulated
as a minimum cost network flow problem.

Minimize z = 5x1 + 8x2 + 11x3 + 10x4

+4x5 + 9x6 + 6x7 + 8x8 + 7x9

subject to x1, . . . , x9 ≥ 0
x1 + x2 = 15
x2 + x3 + x4 = 20
x4 + x5 = 12
x6 + x7 + x8 = 27
x8 + x9 = 14
x3 + x7 ≤ 18.

Starting with a solution in which x1, x2, x4, x7 and x8 take positive
values, and the constraint x3+x7 ≤ 18 is satisfied as a strict inequality,
use the network simplex method to solve the problem.

ANSWER

(a) Select any node w of the network. for each source node i (i 6= w), if
there is no arc from i to w, add an artificial arc with cost c′iw = 1. For
each non-source node j (j 6= w), if there is no arc from w to j, add
an artificial arc with cost c′wj − 1. All original arcs (k, l) are assigned
a cost c′kl = 0. The first phase of the nethod minimizes z ′ =

∑

cklxkl

(where xkl is the flow in arc (k, l)). The initial tree solution is

xiw = ai for source nodes with supply ai

xwj = bj for intermediate and sink nodes with demand bj

• If, at the end of phase 1, z′ > 0, the problem is infeasible.

• If z′ = 0 and the feasible tree solution contains no artificial arc,
the second phase of finding the minimum cost flow starts.
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• If z′ = 0 but there is some artificial arc (u, v) in the feasible
tree solution with xuv = 0, consider the dual variables yi for this
solution. The satisfy yi + c′ij ≥ yj for all arcs (i, j) with equality
holding for arcs of the tree solution. Partition the nodes into two
sets S and T , where S = {k|yk ≤ yu} and T = {k|yK > yu}. The
problem decomposes into subproblems involving nodes of S, and
nodes of T , and arcs between S and T are removed.

(b) Multiplying some of the constraints by −1 and introducing slack vari-
ables, we obtain

x1 + x2 = 15

−x2 − x3 − x4 = −20

x4 + x5 = 12

−x6 − x7 − x8 = −27

x8 + x9 = 14

x3 + x7 + s = 18

−x1 − x5 + x6 − x9 − s = −12

where the last constraint is obtained by summing the others.
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The initial tree solution is
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Non basic (i, j) yi + cij − yj

(3,7) −3
(5,7) −2
(6,2)
(7,4) 3

Entering arc is (3,7)
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Leaving arc is (1,7).
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Thus, we have an optimal solution

x1 = 0 x2 = 15 x3 = 0 x4 = 5 x5 = 7 x6 = 0 x7 = 13 x8 = 14 x9 = 0

z = 8× 15 + 10× 5 + 4× 7 + 6× 13 + 8× 14 = 388
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