## QUESTION

(a) Describe how artificial arcs are used in the network simplex method. Suppose that artificial arcs remain in the tree solution at the end of phase 1 of the two-phase network simplex method. State the conditions under which phase 2 should be performed, and describe what happens to these artificial arcs in phase 2.
(b) Show that the following linear programming problem can be formulated as a minimum cost network flow problem.

$$
\begin{array}{ll}
\text { Minimize } & z=5 x_{1}+8 x_{2}+11 x_{3}+10 x_{4} \\
& +4 x_{5}+9 x_{6}+6 x_{7}+8 x_{8}+7 x_{9} \\
\text { subject to } & x_{1}, \ldots, x_{9} \geq 0 \\
& x_{1}+x_{2}=15 \\
& x_{2}+x_{3}+x_{4}=20 \\
& x_{4}+x_{5}=12 \\
& x_{6}+x_{7}+x_{8}=27 \\
& x_{8}+x_{9}=14 \\
& x_{3}+x_{7} \leq 18
\end{array}
$$

Starting with a solution in which $x_{1}, x_{2}, x_{4}, x_{7}$ and $x_{8}$ take positive values, and the constraint $x_{3}+x_{7} \leq 18$ is satisfied as a strict inequality, use the network simplex method to solve the problem.

## ANSWER

(a) Select any node $w$ of the network. for each source node $i(i \neq w)$, if there is no arc from $i$ to $w$, add an artificial arc with cost $c_{i w}^{\prime}=1$. For each non-source node $j(j \neq w)$, if there is no arc from $w$ to $j$, add an artificial arc with cost $c_{w j}^{\prime}-1$. All original arcs $(k, l)$ are assigned a cost $c_{k l}^{\prime}=0$. The first phase of the nethod minimizes $z^{\prime}=\sum c_{k l} x_{k l}$ (where $x_{k l}$ is the flow in arc $(k, l)$ ). The initial tree solution is

$$
\begin{aligned}
& x_{i w}=a_{i} \text { for source nodes with supply } a_{i} \\
& x_{w j}=b_{j} \text { for intermediate and sink nodes with demand } b_{j}
\end{aligned}
$$

- If, at the end of phase $1, z^{\prime}>0$, the problem is infeasible.
- If $z^{\prime}=0$ and the feasible tree solution contains no artificial arc, the second phase of finding the minimum cost flow starts.
- If $z^{\prime}=0$ but there is some artificial arc $(u, v)$ in the feasible tree solution with $x_{u v}=0$, consider the dual variables $y_{i}$ for this solution. The satisfy $y_{i}+c_{i j}^{\prime} \geq y_{j}$ for all arcs $(i, j)$ with equality holding for arcs of the tree solution. Partition the nodes into two sets $S$ and $T$, where $S=\left\{k \mid y_{k} \leq y_{u}\right\}$ and $T=\left\{k \mid y_{K}>y_{u}\right\}$. The problem decomposes into subproblems involving nodes of $S$, and nodes of $T$, and arcs between $S$ and $T$ are removed.
(b) Multiplying some of the constraints by -1 and introducing slack variables, we obtain

$$
\begin{aligned}
x_{1}+x_{2} & =15 \\
-x_{2}-x_{3}-x_{4} & =-20 \\
x_{4}+x_{5} & =12 \\
-x_{6}-x_{7}-x_{8} & =-27 \\
x_{8}+x_{9} & =14 \\
x_{3}+x_{7}+s & =18 \\
-x_{1}-x_{5}+x_{6}-x_{9}-s & =-12
\end{aligned}
$$

where the last constraint is obtained by summing the others.


The initial tree solution is


| Non basic $(i, j)$ | $y_{i}+c_{i j}-y_{j}$ |
| :---: | :---: |
| $(3,7)$ | -3 |
| $(5,7)$ | -2 |

$(7,4) \quad 3$
Entering arc is $(3,7)$


$$
\theta=7
$$

Leaving arc is $(1,7)$.


| Non basic $(i, j)$ | $y_{i}+c_{i j}-y_{j}$ |
| :---: | :---: |
| $(1,7)$ | 3 |
| $(5,7)$ | 5 |
| $(6,2)$ | 5 |
| $(7,4)$ | 3 |

Thus, we have an optimal solution

$$
\begin{gathered}
x_{1}=0 x_{2}=15 x_{3}=0 x_{4}=5 x_{5}=7 x_{6}=0 x_{7}=13 x_{8}=14 x_{9}=0 \\
z=8 \times 15+10 \times 5+4 \times 7+6 \times 13+8 \times 14=388
\end{gathered}
$$

