QUESTION

Let A be the 3×3 symmetric matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

Calculate the determinant of the matrix A. Find the eigenvalues of A, and construct the corresponding normalised eigenvectors.
(i) Show that your eigenvalues are mutually orthogonal.
(ii) Write down an orthogonal matrix R such that $R^{T} A R$ is diagonal with the eigenvalues of A as its diagonal entries. Verify this by calculating $A R$ and $R^{T} A R$.

ANSWER
Determinant of A :

$$
\begin{aligned}
\left|\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right| & =2\left|\begin{array}{ll}
3 & 1 \\
1 & 2
\end{array}\right|-\left|\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right|+0 \\
& =2(6-1)-(2)=8
\end{aligned}
$$

Eigenvalues correspond to solutions of

$$
\begin{aligned}
\left|\begin{array}{ccc}
2-\lambda & 1 & 0 \\
1 & 3-\lambda & 1 \\
0 & 1 & 2-\lambda
\end{array}\right| & =0 \\
(2-\lambda)[(3-\lambda)(2-\lambda)-1]-[2-\lambda] & =0 \\
(2-\lambda)\left(\lambda^{2}-5 \lambda+2-2\right) & =0 \\
(2-\lambda)\left(\lambda^{2}-5 \lambda+4\right) & =0 \\
(2-\lambda)(\lambda-1)(\lambda-4) & =0
\end{aligned}
$$

Therefore the eigenvalues are 1, 2 and 4 .
$\lambda=1$

$$
\left.\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \begin{array}{r}
x+y=0 \\
x+2 y+z=0 \\
y+z=0
\end{array}\right\} \begin{aligned}
& x=-y \\
& z=-y
\end{aligned}
$$

A suitable eigenvector $\mathbf{x}_{1}=\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$ which is normalised to $\left(\begin{array}{c}\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right)$. $\lambda=2$

$$
\left.\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad \begin{array}{r}
y=0 \\
x+y+z=0 \\
y=0
\end{array}\right\} \begin{gathered}
y=0 \\
z=-x
\end{gathered}
$$

A suitable eigenvector $\mathbf{x}_{2}=\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right)$ which is normalised to $\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}}\end{array}\right)$. $\lambda=4$

$$
\left.\left(\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \begin{array}{r}
-2 x+y=0 \\
x-y+z=0 \\
y-2 z=0
\end{array}\right\} \begin{aligned}
& y=2 x \\
& y=2 z
\end{aligned}
$$

A suitable eigenvector $\mathbf{x}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right)$ which is $\mathrm{m}=$ normalised to $\left(\begin{array}{c}\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}}\end{array}\right)$.
(i) Mutually orthogonal eigenvectors $\mathbf{x}_{i}, \mathbf{x}_{j}$ satisfy $\mathbf{x}_{i} \cdot \mathbf{x}_{j}=0=\mathbf{x}_{j} \mathbf{x}_{i}$

$$
\begin{aligned}
& \mathbf{x}_{1} \cdot \mathbf{x}_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)=1+0-1=0 \\
& \mathbf{x}_{1} \cdot \mathbf{x}_{3}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=1-2+1=0 \\
& \mathbf{x}_{2} \cdot \mathbf{x}_{3}=\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right)=1+0-1=0 \\
& \text { tually orthogonal. }
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& R=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right) \quad R^{T}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right) \\
& R^{T} A R=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
A R & =\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 3 & 1 \\
0 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{2}} & \frac{4}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{8}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{2}} & \frac{4}{\sqrt{6}}
\end{array}\right) \\
R^{T} A R & =\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right)\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{2}} & \frac{4}{\sqrt{6}} \\
-\frac{1}{\sqrt{3}} & 0 & \frac{8}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{2}} & \frac{4}{\sqrt{6}}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right)
\end{aligned}
$$

