QUESTION

(a) Find the vector equation of the plane Π_{1} which passes through the three points $L=(1,3,4), M=(2,-3,0)$ and $N=(1,0,1)$. What is the equation of the plane in terms of x, y, z coordinates?
A second plane Π_{2} is parallel to Π_{1} and passes through the point $Q=$ $(3,1,1)$. Find the equation of Π_{2} in terms of x, y, z coordinates.
(b) (You should state clearly any properties of the cross product that you use.) Let $\mathbf{a}=\mathbf{i}-3 \mathbf{j}+2 \mathbf{k}$ and $\mathbf{b}=2 \mathbf{i}+2 \mathbf{j}-5 \mathbf{k}$ be vectors. Calculate $\mathbf{a} \times \mathbf{b}$ and hence write down $\mathbf{b} \times \mathbf{a}$. Find the relation that must hold between x_{1}, x_{2} and x_{3} if the vector $\mathbf{x}=x_{1} \mathbf{i}+x_{2} \mathbf{j}+x_{3} \mathbf{k}$ is to be written in the form

$$
\mathbf{x}=s \mathbf{a}+t \mathbf{b}
$$

where s and t are scalars.
If $\mathbf{c}=7 \mathbf{i}-5 \mathbf{j}-4 \mathbf{k}$, calculate $\mathbf{c} \times \mathbf{a}$ and $\mathbf{c} \times \mathbf{b}$. Show that \mathbf{c} can be expressed in the form $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$ and find s and t in this case.

ANSWER

(a) Vector equation of plane: $\mathbf{n}\left(\mathbf{r}-\mathbf{r}_{0}\right)=0$ where
$\mathbf{r}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right)$ is the position vector of a general point on the plane;
\mathbf{r}_{0} is the position vector of a known point on the plane;
\mathbf{n} is a normal vector to the plane.
The point $L=(1,3,4)$ lies on the plane, so let $\mathbf{r}_{0}=\left(\begin{array}{l}1 \\ 3 \\ 4\end{array}\right)$. two vectors in the plane are $L \vec{M}$ and $\overrightarrow{L N}$.

$$
\overrightarrow{L M}=\left(\begin{array}{c}
2 \\
-3 \\
0
\end{array}\right)-\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{c}
1 \\
-6 \\
-4
\end{array}\right), \overrightarrow{L N}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)-\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{c}
0 \\
-3 \\
-3
\end{array}\right)
$$

A vector normal to the plane is $L \vec{M} \times \overrightarrow{L N}$ when

$$
L \vec{M} \times \overrightarrow{L N}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -6 & -4 \\
0 & -3 & -3
\end{array}\right|=\left(\begin{array}{c}
6 \\
3 \\
-3
\end{array}\right)
$$

so let $\mathbf{n}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$.
Vector equation of plane Π_{1} is therefore $\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right) \cdot\left[\left(\begin{array}{c}x \\ y \\ z\end{array}\right)-\left(\begin{array}{l}1 \\ 3 \\ 4\end{array}\right)\right]=$ 0

Standard equation of $\Pi_{1}: 2(x-1)+(y-3)-(z-4)=0$ or $2 x+y-z=$ $2+3-4=1$
Plane Π_{2} is parallel to Π_{1} and so has the equation $2 x+y-z=d$ for some constant d.
Since Π_{2} contains the point $Q=(3,1,1)$ we have $2(3)+(1)-(1)=$ $d \Rightarrow d=6$ so the standard equation of Π_{2} is $2 x+y-z=6$.
(b)

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -3 & 2 \\
2 & 27 & -5
\end{array}\right|=\left(\begin{array}{c}
11 \\
9 \\
8
\end{array}\right), \mathbf{b} \times \mathbf{a}=-(\mathbf{a} \times \mathbf{b})=\left(\begin{array}{c}
-11 \\
-9 \\
-8
\end{array}\right)
$$

Note that $\mathbf{a} .(\mathbf{a} \times \mathbf{b})=0=\mathbf{b} .(\mathbf{a} \times \mathbf{b})$
Take dot product of $\mathbf{x}=s \mathbf{a}+\boldsymbol{t} \mathbf{b}$ with vector $(\mathbf{a} \times \mathbf{b})=0$ so $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)\left(\begin{array}{c}11 \\ 9 \\ 8\end{array}\right)=$ 0 and relation is $11 x_{1}+9 x_{2}+8 x_{3}=0$
$\mathbf{c} \times \mathbf{a}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & -5 & -4 \\ 1 & -3 & 2\end{array}\right|=\left(\begin{array}{c}-22 \\ -18 \\ -16\end{array}\right), \mathbf{c} \times \mathbf{b}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 7 & -5 & -4 \\ 2 & 2 & -5\end{array}\right|=\left(\begin{array}{l}33 \\ 27 \\ 24\end{array}\right)$
$\mathbf{c}=\left(\begin{array}{c}7 \\ -5 \\ -4\end{array}\right)$ so if $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$ then we must have the relation

$$
11(7)+9(-5)+8)-4)=77-45-32=0
$$

so \mathbf{c} can be expanded in the required form.
Note $\mathbf{a} \times \mathbf{a}=0=\mathbf{b} \times \mathbf{b}$.
To fins s : take cross product of $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$ with \mathbf{b}

$$
\mathbf{c} \times \mathbf{b}=s \mathbf{a} \times \mathbf{b}+t \mathbf{b} \times \mathbf{b}=s \mathbf{a} \times \mathbf{b}
$$

then $\left(\begin{array}{l}33 \\ 27 \\ 24\end{array}\right)=s\left(\begin{array}{c}11 \\ 9 \\ 8\end{array}\right)$ and so $s=3$.
To find t : Take the cross product of $\mathbf{c}=s \mathbf{a}+t \mathbf{b}$ with \mathbf{a}

$$
\begin{gathered}
\mathbf{c} \times \mathbf{a}=s \mathbf{a} \times \mathbf{a}+t \mathbf{b} \times \mathbf{a}=t \mathbf{b} \times \mathbf{a} \\
\text { then }\left(\begin{array}{c}
-22 \\
-18 \\
-16
\end{array}\right)=t\left(\begin{array}{c}
-11 \\
-9 \\
-8
\end{array}\right) \text { and } t=2 .
\end{gathered}
$$

Therefore, $\mathbf{c}=3 \mathbf{a}+2 \mathbf{b}$.

