## Question

Consider the two dimensional wave equation,

$$
c^{2} \frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=0 .
$$

with Cauchy boundary conditions:

$$
u(x, 0)=f(x), u_{y}(x, 0)=g(x 0
$$

Recall from lectures that the general solution is given by

$$
u(x, y)=\frac{1}{2}[f(x+c y)+f(x-c y)]-\frac{1}{2 c} \int_{x-c y}^{x+c y} g(s) d s
$$

Assuming that $f$ and $g$ are suitably differentiable, calculate the Taylor expansion of this solution about $9 x, y)=(0,0)$ up to second order,
(i) directly from the exact solution
(ii) by parametrising the given boundary conditions on given curve $C$ :

$$
(x, y)=(X(\tau), Y(\tau))=(\tau, 0)
$$

Confirm that the two agree.

## Answer

$c^{2} u_{x x}-u_{y y}=0$
(1) $u(x, 0)=f(x)$
(2) $u_{y}(x, 0)=g(x)$
$\Rightarrow X(\tau)=\tau, Y(\tau)=0$
Data is given on $x$-axis. Hence $C$ is parametrised as:
On $C:(x, y)=(X(\tau), Y(\tau))$
$(3) \Rightarrow\left\{\begin{array}{l}\dot{X}=1, \dot{Y}=0 \\ \ddot{X}=0, \ddot{Y}=0\end{array}\right.$
(i) Must expand exact solution as Taylor about ( 0,0 )

$$
\begin{aligned}
& u(x, y)= \frac{1}{2}\left[f^{\prime}(x+c y)+f(x-c y)\right]+\frac{1}{2 c} \int_{x-c y} x+c y g(s) d s \\
&\left\{\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{1}{2}\left[f^{\prime}+f^{\prime}\right]+\frac{1}{2 c}[g(x+c y)-g(x-c y)] \\
\left.\Rightarrow \frac{\partial u}{\partial x}\right|_{(0,0)} & =\frac{1}{2}\left(f^{\prime}(0)+f^{\prime}(0)\right]+\frac{1}{2 c}[g(0)-g(0)]=\underline{f^{\prime}(0)}
\end{aligned}\right.
\end{aligned}
$$

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial y} & =\frac{1}{2}\left[c f^{\prime}-c f^{\prime}\right]+\frac{c}{2 c}[g(x+c y)+g(x-c y)] \\
\left.\Rightarrow \frac{\partial u}{\partial y}\right|_{(0,0)} & =\frac{1}{2}\left(c f^{\prime}(0)-c f^{\prime}(0)\right]+\frac{1}{2}[g(0)+g(0)]=\underline{g(0)}
\end{aligned}\right.
$$

Also $u(0,0)=\frac{1}{2}[f(0)+f(0)]+\frac{1}{2 c} \int_{0}^{0} g(s) d s=\underline{f(0)}$
$\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{2}\left[f^{\prime \prime}+f^{\prime \prime}\right]+\left.\frac{1}{2 c}\left[g^{\prime}-g^{\prime}\right] \Rightarrow \frac{\partial^{2} u}{\partial x^{2}}\right|_{(0,0)}=f^{\prime \prime}(0)$
$\frac{\partial^{2} u}{\partial x \partial y}=\frac{1}{2}\left[c f^{\prime \prime}-c f^{\prime \prime}\right]+\left.\frac{1}{2 c}\left[c g^{\prime}+c g^{\prime}\right] \Rightarrow \frac{\partial^{2} u}{\partial x \partial y}\right|_{(0,0)}=g^{\prime}(0)$
$\frac{\partial^{2} u}{\partial y^{2}}=\frac{1}{2}\left[c^{2} f^{\prime \prime}+c^{2} f^{\prime \prime}\right]+\left.\frac{1}{2 c}\left[c^{2} g^{\prime}-c^{2} g^{\prime}\right] \Rightarrow \frac{\partial^{2} u}{\partial y^{2}}\right|_{(0,0)}=c^{2} f^{\prime \prime}(0)$
Thus the Taylor expansion around $(0,0)$ is

$$
\begin{aligned}
u(x, y)= & \left.u(0,0)_{+} x \frac{\partial u}{\partial x}\right|_{(0,0)}+\left.y \frac{\partial u}{\partial y}\right|_{(0,0)} \\
+ & \left.\frac{x^{2}}{2} \frac{\partial^{2} u}{\partial x^{2}}\right|_{(0,0)}+\left.x y \frac{\partial^{2} u}{\partial x \partial y}\right|_{(0,0)}+\left.\frac{y^{2}}{2} \frac{\partial^{2} u}{\partial y^{2}}\right|_{(0,0)}+\cdots \\
u(x, y)= & f(0)+x f^{\prime}(0)+y g(0) \\
& +\frac{x^{2}}{2} f^{\prime \prime}(0)+x y g^{\prime}(0)+\frac{y^{2} c^{2}}{2} f^{\prime \prime}(0)+\cdots
\end{aligned}
$$

(ii) Seek $\left.u\right|_{(0,0)},\left.u_{x}\right|_{(0,0)},\left.u_{y}\right|_{(0,0)},\left.u_{x x}\right|_{(0,0)},\left.u_{x y}\right|_{(0,0)},\left.u_{y y}\right|_{(0,0)}$ from equation and boundary data only.
From (1) $\quad u(0,0)=f(0)$
From (2) $\quad u_{y}(0,0)=g(0)$
Get $u_{x}$ by differentiating (1) with respect to $\tau$ :

$$
\frac{d(1)}{d \tau}:=\left.u_{x}\right|_{C} \dot{X}+\left.u_{y}\right|_{C} \dot{Y}=f_{x} \dot{X} \Rightarrow \underline{\left.u_{x}\right|_{C}=f^{\prime}(x)}
$$

Now seek $\left.u_{x x}\right|_{(0,0)},\left.u_{x y}\right|_{(0,0)},\left.u_{y y}\right|_{(0,0)}$ etc. from 3 equations.
First is PDE itself:
(4) $\left.x^{2} u_{x x}\right|_{C}-\left.u_{y y}\right|_{C}=0$

Second is
$\frac{d(2)}{d \tau}:=\left.u_{y x}\right|_{C} \dot{X}+\left.u_{y y}\right|_{C} \dot{Y}=\left.g_{x} \dot{X} \Rightarrow \underline{u_{x y}}\right|_{C}=g^{\prime}(x)$ from (3)
Third is from
$\frac{d^{2}(1)}{d \tau^{2}}:=$
$\left.u_{x x}\right|_{C} \dot{X}^{2}+\left.u_{x y}\right|_{C} \dot{X} \dot{Y}+\left.u_{x}\right|_{C} \ddot{X}$
$+\left.u_{y x}\right|_{C} \dot{Y} \dot{X}+\left.u_{y y}\right|_{C} \dot{Y}^{2}+\left.u_{y}\right|_{C} \ddot{Y}=f_{x x} \dot{X}^{2}+f_{x} \ddot{X}$
$\left.\Rightarrow u_{x x}\right|_{C}=f_{x x}=f^{\prime \prime}(x)$ from (3)
Thus we have
$\begin{array}{ll}(7) & \rightarrow \\ (6) & \rightarrow \\ (5) & \rightarrow(\underbrace{\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ c^{2} & 0 & -1\end{array}})\left(\begin{array}{l}u_{x x} \\ u_{x y} \\ u_{y y}\end{array}\right)=\left(\begin{array}{c}f^{\prime \prime} \\ g^{\prime}(x) \\ 0\end{array}\right)\end{array}$
So $\triangle=\operatorname{det}()=-1 \neq$ anywhere on $C$ so can find solution
Not difficult to solve
$\Rightarrow\left\{\begin{array}{l}u_{x x}=f^{\prime \prime}(x) \\ u_{x y}= \\ g_{y y}^{\prime}(x) \\ u_{y y}=c^{2} f^{\prime \prime}(x)\end{array}\right\}(B)$
Hence expanding about $(0,0)$ we have:

$$
\begin{aligned}
u(x, y)= & f(0)\left(\text { from }(1)+\mathrm{xf}^{\prime}(0)(\text { from }(\mathrm{A})+\mathrm{yg}(0) \text { (from (2) }\right. \\
& +\underbrace{\frac{x^{2}}{2} f^{\prime \prime}(0)+x y g^{\prime}(0)+\frac{y^{2} c^{2}}{2} f^{\prime \prime}(0)}+\cdots
\end{aligned}
$$

which is exactly the same as the result of part (i) as required.

