Question

Find the region in which the equation

$$
\left[(x-y)^{2}-1\right] u_{x x}+2 u x y+\left[(x-y)^{2}-1\right] u_{y y}=0
$$

is of hyperbolic type. Write down the differential equation of the characteristics and, by making the change of variables $\xi=x+y, \eta=x-y$, show that it may be written as

$$
\frac{d \xi}{d \eta}= \pm \frac{e t a}{\sqrt{2-\eta^{2}}}
$$

Deduce the form of the characteristics.
Answer
$a=\left[(x-y)^{2}-1\right], b=1, c=\left[(x-y)^{2}-1\right]$
$b^{2}-a c=1-\left[(x-y)^{2}-1\right]^{2}=(x-y)^{2}\left(2-(x-y)^{2}\right)$
so is hyperbolic for $0<(x-y)^{2}<2$

$$
\text { i.e., } 0<|x-y|<\sqrt{2}
$$

Parabolic on $x=y$ i.e., $o=|x-y|, \sqrt{2}=|x-y|,(x-y)=\sqrt{2}$ elliptic for $(x-y)^{2} .2$ i.e., $\sqrt{2}<|x-y|$
Characteristics when parabolic/hyperbolic given by

$$
\begin{equation*}
\left[(x-y)^{2}-1\right] d x^{2}-2 d x d y+\left[(x-y)^{2}-1\right] d y^{2}=0 \tag{A}
\end{equation*}
$$

or $\frac{d y}{d x}=\frac{2 \pm \sqrt{(x-y)^{2}\left(2-(x-y)^{2}\right)}}{\left[(x-y)^{2}-1\right]}$ not nice to solve
Make change $\left\{\begin{array}{l}\xi=x+y \\ \eta=x-y\end{array}\right\}$ as per question
$\left\{\begin{array}{l}x=\frac{1}{2}(\xi+\eta) \\ \left.y=\frac{!}{2} 9 \xi-\eta\right)\end{array}\right\} \Rightarrow\left\{\begin{array}{l}d x=\frac{1}{2}(d \xi+d \eta) \\ d y=\frac{1}{2}(d \xi-d \eta)\end{array}\right\}$
Substitute this into (A):

$$
\begin{aligned}
& \frac{\left(\eta^{2}-1\right)}{4}(d \xi+d \eta)^{2}-\frac{1}{2\left(d \xi^{2}-d \eta^{2}\right)}+\frac{\left(\eta^{2}-1\right)}{4}(d \xi-d \eta)^{2}=0 \\
& \Rightarrow\left[(\eta-1)^{2}-1\right] d \xi^{2}+\left[\left(\eta^{2}-1\right)+1\right] d \eta^{2}=0 \\
& \Rightarrow \frac{d \xi}{d \eta}= \pm \sqrt{-\left[\frac{\left(\eta^{2}-1\right)+1}{\left(\eta^{2}-1\right)-1}\right]}= \pm \frac{\eta}{\left(2-\eta^{2}\right)^{\frac{1}{2}}} \text { as required }
\end{aligned}
$$

Solve this for η

$$
\begin{aligned}
\int d \xi & = \pm \int \frac{d \eta \eta}{\left(2-\eta^{2}\right)^{\frac{1}{2}}} \\
\xi & =\mp \sqrt{2-\eta^{2}}+\mathrm{const}
\end{aligned}
$$

or

$$
(\xi+c)^{2}+\eta^{2}=2
$$

Circles centred at $\xi=-c$ radius $\sqrt{2}$
In original coords

$$
(x+y+c)^{2}+(x-y)^{2}=2
$$

or see diagram below:
PICTURE

