Exam Question

Topic: DiffInt
Show that $f(x)$ is an odd function, where

$$
f(x)=\int_{x}^{2 x} \exp \left(-t^{2}\right) d t
$$

By differentiating the integral find the turning points of $f(x)$ and identify their type.

Solution

Writing down the formula for $f(-x)$ and substituting $t=-u$ gives

$$
\begin{aligned}
& f(-x)=\int_{-x}^{-2 x} \exp \left(-t^{2}\right) d t=\int_{x}^{2 x} \exp \left(-u^{2}\right)(-d u)=-f(x) . \\
& \begin{aligned}
f^{\prime}(x) & =2 \exp \left(-4 x^{2}\right)-\exp \left(-x^{2}\right) \\
& =2 \exp \left(-x^{2}\right)\left(\exp \left(-3 x^{2}-\frac{1}{2}\right)\right. \\
= & 0 \text { iff } \exp \left(-3 x^{2}\right)=\frac{1}{2} \text { i.e. } x^{2}=\frac{\ln 2}{3}
\end{aligned} \\
& \text { For } x>0, f^{\prime}(x)>0 \text { if } x<\sqrt{\frac{\ln 2}{3}} \\
& \qquad f^{\prime}(x)<0 \text { if } x>\sqrt{\frac{\ln 2}{3}}
\end{aligned}
$$

So f has a maximum at $x=\sqrt{\frac{\ln 2}{3}}$ and hence, since f is odd, a minimum at $x=-\sqrt{\frac{\ln 2}{3}}$

