Ordinary Differential Equations Classification

Question

If one solution of $y^{\prime \prime}-k^{2} y=0$ is $y_{1}=e^{k x}$, guess and verify a solution y_{2} that is not a multiple of y_{1}.
Find a solution to satisfy $y(1)=0$ and $y^{\prime}(1)=2$.
Answer
As $y_{1}=e^{k x}$ is a solution. A sensible guess for y_{2} is $y_{2}=e^{-k x}$.
Since

$$
y_{2}^{\prime \prime}-k^{2} y_{2}=k^{2} e^{-k x}-k^{2} e^{-k x}=0
$$

then y_{2} is confirmed as a solution.
The DE is linear and homogeneous, so any function of the form

$$
y=A y_{1}+B y_{2}=A e^{k x}+B e^{-k x}
$$

is also a solution.
To satisfy the given conditions:

$$
\begin{aligned}
& 0=y(1)=A e^{k}+B e^{-k} \\
& 2=y^{\prime}(1)=A k e^{k}-B k e^{-k}
\end{aligned}
$$

provided that

$$
\begin{aligned}
& A=e^{-k} / k \\
& B=-e^{k} / k
\end{aligned}
$$

So the solution is

$$
y=\frac{1}{k} e^{k(x-1)}-\frac{1}{k} e^{-k(x-1)}
$$

