Ordinary Differential Equations Classification

Question

If one solution of $y^{\prime \prime}+k^{2} y=0$ is $y_{1}=\cos (k x)$, guess and verify a solution y_{2} that is not a multiple of y_{1}.
Find a solution to satisfy $y(\pi / k)=3$ and $y^{\prime}(\pi / k)=3$.
Answer
As $y_{1}=\cos (k x)$ is a solution. A sensible guess for y_{2} is $y_{2}=\sin (k x)$.
Since

$$
y_{2}^{\prime \prime}+k^{2} y_{2}=-k^{2} \sin (k x)+k^{2} \sin (k x)=0
$$

then y_{2} is confirmed as a solution.
The DE is linear and homogeneous, so any function of the form

$$
y=A y_{1}+B y_{2}=A \cos (k x)+B \sin (k x)
$$

is also a solution.
To satisfy the given conditions:

$$
\begin{aligned}
& 3=y(\pi / k)=A \cos (\pi)+B \sin (\pi)=-A \\
& 3=y^{\prime}(\pi / k)=-A k \sin (\pi)+B k \cos (\pi)=-B k
\end{aligned}
$$

and so

$$
\begin{aligned}
& A=-3 \\
& B=-3 / k
\end{aligned}
$$

So the solution is

$$
y=-3 \cos (k x)-\frac{3}{k} \sin (k x)
$$

