Ordinary Differential Equations Classification

Question

Show that $y=\cos x$ and $y=\sin x$ are solutions of $y^{\prime \prime}+y=0$. Which of the following are solutions? Justify your answer.
(a) $\sin x-\cos x$
(b) $\sin (x+3)$
(c) $\sin 2 x$

Answer

$$
\begin{aligned}
\text { If } y & =\cos x \\
\Rightarrow y^{\prime \prime}+y & =-\cos x+\cos x=0 \\
\text { If } y & =\sin x \\
\Rightarrow y^{\prime \prime}+y & =-\sin x+\sin x=0
\end{aligned}
$$

So $y=\cos x$ and $y=\sin x$ are both solutions.
As the DE is linear and homogeneous, any function of the form

$$
y=A \cos x+B \sin x
$$

is also a solution.
(a) $\sin x-\cos x$ fits with $A=-1, B=1$ and so is a solution.
(b) $\sin (x+3)=\sin 3 \cos x+\cos 3 \sin x$ fits with $A=\sin 3, B=\cos 3$ and so is also a solution.
(c) $\sin 2 x$ cannot be represented in the form $A \cos x+B \sin x$ and therefore is not a solution.

