QUESTION Find the mgf of the square of a standard normal variable. Hence find the mgf of a χ^2 -distribution with ν degrees of freedom. Hence show that the χ^2 -distribution is a particular form of a gamma distribution and state the parameters of gamma. What form does the χ^2 -distribution take if ν =2.

ANSWER

$$M_{x^{2}}(t) = E(e^{X^{2}t})$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^{2}} e^{x^{2}t} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}x^{2}(1-2t)} dx$$

$$= \frac{1}{(1-2t)^{\frac{1}{2}}}$$

(from $N(\mu, \sigma^2)$ we know that $\frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = 1$. let $\mu = 0$, $\sigma^2 = \frac{1}{1-2t}$).

 $\frac{1}{1-2t}$). $M_{\nu}^2 = X_1^2 + X_2^2 + \ldots + X_{\nu}^2$ where each X_i has an independent N(0,1) distribution hence $M_{X_{\nu}^2}(t) = [M_{X^2}(t)]^{\nu} = \frac{1}{(1-2t)^{\frac{\nu}{2}}}$

For
$$\varrho(\lambda)$$
 $M(t) = \frac{\lambda}{\lambda - t} = \frac{1}{1 - \frac{t}{\lambda}}$

For Gamma m, λ $M(t) = (\frac{1}{1-\frac{t}{\lambda}})^2$ (this follows for integer m and in fact works for a general m)

Hence by uniqueness X_{ν}^2 is Gamma $m = \nu$ $\lambda = \frac{1}{2}$. If $\nu = 2$ $M(t) = \frac{1}{1-2t}$ i.e. $\varrho(\frac{1}{2})$