QUESTION Find the mgf of the square of a standard normal variable. Hence find the mgf of a $\chi^{2}$-distribution with $\nu$ degrees of freedom. Hence show that the $\chi^{2}$-distribution is a particular form of a gamma distribution and state the parameters of gamma. What form does the $\chi^{2}$-distribution take if $\nu=2$.

ANSWER

$$
\begin{aligned}
M_{x^{2}}(t) & =E\left(e^{X^{2} t}\right) \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}} e^{x^{2} t} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} x^{2}(1-2 t)} d x \\
& =\frac{1}{(1-2 t)^{\frac{1}{2}}}
\end{aligned}
$$

(from $N\left(\mu, \sigma^{2}\right)$ we know that $\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x=1$. let $\mu=0, \sigma^{2}=$ $\frac{1}{1-2 t}$ ).
$M_{\nu}^{2}=X_{1}^{2}+X_{2}^{2}+\ldots+X_{\nu}^{2}$ where each $X_{i}$ has an independent $\mathrm{N}(0,1)$ distribution hence $M_{X_{\nu}^{2}}(t)=\left[M_{X^{2}}(t)\right]^{\nu}=\frac{1}{(1-2 t)^{\frac{\nu}{2}}}$
For $\varrho(\lambda) M(t)=\frac{\lambda}{\lambda-t}=\frac{1}{1-\frac{t}{\lambda}}$
For Gamma $\mathrm{m}, \lambda M(t)=\left(\frac{1}{1-\frac{t}{\lambda}}\right)^{2}$ (this follows for integer m and in fact works for a general m)
Hence by uniqueness $X_{\nu}^{2}$ is Gamma $m=\nu \quad \lambda=\frac{1}{2}$. If $\nu=2 \quad M(t)=\frac{1}{1-2 t}$ i.e. $\varrho\left(\frac{1}{2}\right)$

