QUESTION Find the mgf for a random variable which is uniform on the interval $a<x<b$. Use the mgf to find the mean and variance of the distribution.

ANSWER $f(x)=\frac{1}{b-a} a<x<b$

$$
\begin{aligned}
M(t) & =\int_{a}^{b} \frac{e^{x t}}{b-a} d x \\
& =\frac{1}{t}\left[\frac{e^{x t}}{b-a}\right]_{a}^{b} \\
& =\frac{e^{b t}-e^{a t}}{t(b-a)} \\
& =\frac{1}{t(b-a)}\left[\left(1+b t+\frac{\left(b t^{2}\right)}{2!}+\frac{(b t)^{3}}{3!}+\ldots\right)-\left(1+a t+\frac{(a t)^{2}}{2!}+(a t)^{3} 3!\right.\right. \\
& =\frac{1}{t(b-a)}\left[(b-a) t+\frac{t^{2}}{2!}\left(b^{2}-a^{2}\right)+\frac{t^{3}}{3!}\left(b^{3}-a^{3}\right)+\ldots\right] \\
& =1+\frac{t(b+a)}{2}+\frac{t^{2}}{3!}\left(b^{2}+a b+a^{2}\right)+\ldots
\end{aligned}
$$

$\mu=$ the coefficient of $\mathrm{t}=\frac{b+a}{2} \quad E\left(X^{2}\right)=2!\times$ the coefficient of $\mathrm{t} 62=\frac{b^{2}+a b+a^{2}}{3}$ $\sigma^{2}=\frac{b^{2}+a b+a^{2}}{3}-\frac{(b+a)^{2}}{4}=\frac{\left.(b-a)^{2}\right)}{12}$ Note that differentiation doesn't work well here because of difficulties at $\mathrm{t}=0$.

