QUESTION The mgf of a random variable Y is $e^{3 t+8 t^{2}}$. Prove that $\mathrm{E}(\mathrm{Y})=3$ and find $\operatorname{Var}(\mathrm{Y})$.

ANSWER $M(t)=e^{3 t+8 t^{2}}=1+\left(3 t+8 t^{2}\right)+\frac{\left(3 t+8 t^{2}\right)^{2}}{2!}+\ldots$ therefore $\mu=$ the coefficient of $t=3$
$\frac{E\left(X^{2}\right)}{2!}=$ the coefficient of $\mathrm{t}^{2}=8+\frac{9}{2}$ therefore $E\left(X^{2}\right)=25$.
Alternatively $M^{(1)}=(3+16 t) e^{3 t+8 t^{2}}, \quad \mu=M^{(1)}(0)=3$
$M^{(2)}(t)=e^{3 t+8 t^{2}}+(3+16 t)^{2} e^{3 t+8 t^{2}}, E\left(X^{2}\right)=M^{(2)}(0)=16+9=25$
Alternatively having found $\mu=3 \quad M^{*}(t)=e^{8 t^{2}}$ we can find σ^{2} directly by expansion of differentiation. Note that $M(t)=e^{3 t+\frac{1}{2} \times 16 t^{2}} \approx e^{\mu+\frac{1}{2} \sigma^{2} t^{2}}$ for $N\left(\mu, \sigma^{2}\right)$ Hence by uniqueness $\mu=3$ and $\sigma^{2}=16$

