QUESTION Transistors produced by a machine may be perfect, slightly damaged or unusable. 70% of the production are perfect and 20% are slightly damaged. Let X be a variable giving the number of perfect transistors, Y the number of slightly damaged transistors and Z the number of unusable transistors in a random sample of 3 transistors. Copy out and complete the following table giving the joint and marginal distributions of X and Y .

ANSWER $\mathrm{P}($ perfect $)=0.7 \sim X$
P (slightly damaged $=0.2 \sim Y$ $\mathrm{P}($ unusable $)=0.1 \sim Z$
$P(X=0, Y=0)=P(Z=3)=0.1^{3}=0.001$ $P(X=1, Y=0)=P(X=1, Z=2)=0.7 \times 0.1^{2} \times 3=0.021$
$P(X+1, Y=1)=P(X=1, Y=1, Z=1)=0.7 \times 0.2 \times 0,1 \times 6=0.084$

$\mathrm{X} \backslash \mathrm{Y}$	0	1	2	3	marginal X
0	${ }^{*} 0.001$	${ }^{*} 0.006$	0.012	0.008	0.027
1	${ }^{*} 0.021$	0.084	0.084	0	0.189
2	0.147	0.294	0	0	0.441
3	0.343	0	0	0	0.343
marginal Y	0.512	0.384	0.096	0.008	1

(i) $X \sim B(3,0.7) E(X)=2.1 \operatorname{Var}(\mathrm{X})=0.63$
(ii) $\begin{array}{lcccc} & \mathrm{P}(\mathrm{X}-\mathrm{y}=0) & \frac{1}{512} & \frac{21}{512} & \frac{147}{512}\end{array} \frac{343}{512}$
$E(X \mid y=0)=\frac{1}{512}(21 \times 1+147 \times 2+343 \times 3)=\frac{1344}{512}=2.625$
$E\left(X^{2} \mid y=0\right)=\frac{1}{512}\left(21 \times 1^{2}+147 \times 2^{2}+343 \times 3^{2}\right)=\frac{3696}{512}=7.21875$
$\operatorname{Var}(X \mid y=0)=7.21875-(2.625)^{2} \approx 0.328$.
(iii) $P(Z>X+Y) Z=3-X-Y>X+Y$ in cells of the table marked with a *.Hence $P(Z>X+Y)=0.028$.

