Question

Find the work done in moving a particle in the force field

$$
\mathbf{F}=3 x^{2} \mathbf{i}+(2 x z-y) \mathbf{j}+z \mathbf{k}
$$

(a) along the straight line from $(0,0,0)$ to $(2,1,3)$,
(b) along the space curve $x=2 t^{2}, y=t, z=4 t^{2}-t$, from $t=0$ to $t=1$.
(c) Is the work done independent of the path? Explain.

Answer

(a) Straight line $x=2 t, y=t, z=3 t 0 \leq t \leq 1$

$$
\begin{aligned}
\text { Work done } & =\int \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{1} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t} d t \\
& =\int_{0}^{1}\left[3(2 t)^{2} \mathbf{i}+(2.2 t .3 t-t) \mathbf{j}+3 t \mathbf{k}\right] \cdot[2 \mathbf{i}+\mathbf{j}+3 \mathbf{k}] d t \\
& =\int_{0}^{1}\left[24 t^{2}+12 t^{2}-t+9 t\right] d t \\
& =\left[8 t^{3}+4 t^{3} \frac{1}{2} t^{2}+\frac{9}{2} t^{2}\right]_{0}^{1} \\
& =8+4+4 \\
& =16
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Work done }= & \int \mathbf{F} \cdot d \mathbf{r} \\
= & \int_{0}^{1} \mathbf{F} \cdot \frac{d \mathbf{r}}{d t} d t \\
= & \int_{0}^{1}\left[3\left((2 t)^{2}\right)^{2} \mathbf{i}+\left(2.2 t^{2}\left(4 t^{2}-t\right) \cdot(-t)\right) \mathbf{j}+\left(4 t^{2}-t\right) \mathbf{k}\right] \\
& \cdot[4 t \mathbf{i}+\mathbf{j}+(8 t-1) \mathbf{k}] d t \\
= & \int_{0}^{1}\left[48 t^{5}+16 t^{4}-4 t^{3}-t+\left(4 t^{t}-t\right)(8 t-1)\right] d t \\
= & {\left[8 t^{6}+\frac{16}{5} t^{5}-t^{4}-\frac{1}{2} t^{2}+\frac{1}{2}\left(4 t^{2}-t\right)^{2}\right]_{0}^{1} }
\end{aligned}
$$

$$
\begin{aligned}
& =8+\frac{16}{5}-1-\frac{1}{2}+\frac{9}{2} \\
& =14 \frac{1}{5}
\end{aligned}
$$

(c) No. The force is not conservative.

