Question

Suppose that 40% of the students in a large population are freshman, 30% are sophomores, 20% are juniors and 10% are seniors. Suppose that 10 students are selected at random from te population; and let $X_{1}, X_{2}, X_{3}, X_{4}$ denote, respectively, the numbers of freshmen, sophomores, juniors, and seniors that are obtained.
(a) Determine $\rho\left(X_{i}, X_{j}\right)$ for each pair of values i and $j(i<j)$.
(b) For what values of i and $j(i<j)$ is $\rho\left(X_{i}, X_{j}\right)$ most negative?
(c) For what values of i and $j(i<j)$ is $\rho\left(X_{i}, X_{j}\right)$ closest to 0 ?

Answer

	Prob.	Number
Freshman	$p_{1}=0.4$	x_{1}
Sophomore	$p_{2}=0.3$	x_{2}
Junior	$p_{3}=0.2$	x_{3}
Senior	$p_{4}=0.1$	x_{4}
$\mathrm{n}=10 . \operatorname{var}\left(X_{i}\right)=n p_{i}\left(1-p_{i}\right) \quad \operatorname{cov}\left(X_{i}, X_{j}\right)=-n p_{i} p_{j}$		

$\operatorname{var}\left(X_{1}\right)=2.4, \quad \operatorname{var}\left(X_{2}\right)=2.1, \quad \operatorname{var}\left(X_{3}\right)=1.6, \quad \operatorname{var}\left(X_{4}\right)=0.9$
We can form a matrix of variances and covariances.

$$
\begin{gathered}
X_{1} \\
X_{1} \\
X_{2} \\
X_{3} \\
X_{3}
\end{gathered}\left(\begin{array}{cccc}
2.4 & -10(0.4)(0.3) & X_{3} & X_{4} \\
-1.2 & 2.1 & -10(0.4)(0.2) & -10(0.4)(0.1) \\
-0.8 & -0.6 & 1.6 & -10(0.3)(0.1) \\
-0.4 & -0.3 & -0.2 & 0.9)(0.1)
\end{array}\right)
$$

Then we can find the correlations $\rho_{X_{i}, X_{j}}=\frac{\operatorname{cov}\left(X_{i}, X_{j}\right)}{\sqrt{\operatorname{var}\left(X_{i}\right) \operatorname{var}\left(X_{j}\right)}}$
(a) $\left(\begin{array}{cccc}1 & -0.534 & -0.408 & -0.272 \\ -0.534 & 1 & -0.327 & -0.218 \\ -0.408 & -0.327 & 1 & -0.167 \\ -0.272 & -0.218 & -0.167 & 1\end{array}\right)=$ correlation matrix
(b) $i=1, j=2$
(c) $i=3, j=4$

