Question

Suppose that X and Y is $N_{2}\left(\mu_{x}=0, \mu_{y}=0, \sigma_{x}=1, \sigma_{y}=1, \rho\right)$. Show that the sum $X+Y$ and the difference $X-Y$ are independent random variables. (Hint: Use the transformation technique.)

Answer

Let $U=X+Y, V=X-Y$
Find the joint pdf of U and V where the joint pdf of X and Y is

$$
\begin{gathered}
f_{X, Y}(x, y)=\frac{1}{2 \pi \sqrt{1-\rho^{2}}} e^{-\frac{1}{2(1-\rho)^{2}}\left\{x^{2}-2 \rho x y+y^{2}\right\}}, \\
(-\infty<x<\infty,-\infty<y<\infty)
\end{gathered}
$$

$x=\frac{u+v}{2} ; \quad y=\frac{u-v}{2}$
$J=\left|\begin{array}{ll}\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}\end{array}\right|=\left|\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2}\end{array}\right|=-\frac{1}{2}$
Now

$$
\begin{aligned}
& x^{2}-2 \rho x y+y^{2} \\
= & \left(\frac{u+v}{2}\right)^{2}+\left(\frac{u-v}{2}\right)^{2}-2 \rho \frac{u+v}{2} \frac{u-v}{2} \\
= & \frac{u^{2}}{2}(1-\rho)+\frac{v^{2}}{2}(1+\rho) \text { (after algebra) }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
f_{U, V}(u, v)= & \frac{1}{2 \pi \sqrt{1-\rho^{2}}} e^{-\frac{1}{2(1-\rho)^{2}}\left\{\frac{u^{2}}{2}(1-\rho)+\frac{v^{2}}{2}(1-\rho)\right\}}\left|-\frac{1}{2}\right| \\
= & \frac{1}{4 \pi \sqrt{1-\rho^{2}}} e^{-\frac{u^{2}}{4(1+\rho)}-\frac{v^{2}}{4(1+\rho)}} \\
& -\infty<u<\infty,-\infty<v<\infty
\end{aligned}
$$

Easy to see that $U \sim N\left\{0, \sigma^{2}=2(1+\rho)\right\}$ and $V \sim N\left\{0, \sigma^{2}=2(1-\rho)\right\}$ and U and V are independent.

