Question

Suppose that X and Y is $N_2(\mu_x, \mu_y, \sigma_x, \sigma_y, \rho)$ for which E(X|Y=y)=3.7-0.15y, E(Y|X=x)=0.4-0.6x, var(Y|X=x)=3.64. Find all the five parameters.

Answer

We know

$$E(X|Y = y) = \mu_x + \rho \frac{\sigma_x}{\sigma_y} (y - \mu_y)$$

$$E(Y|X = x) = \mu_y + \rho \frac{\sigma_y}{\sigma_x} (x - \mu_x)$$

$$var(Y|X = x) = \sigma_y^2 (1 - \rho^2)$$

Here:

$$E(X|Y = y) = 3.7 - 0.15y$$

 $E(Y|X = x) = 0.4 - 0.6x$
 $var(Y|X = x) = 3.64$

Note that the coefficient of y in E(X|Y=y) is $\rho \frac{\sigma_x}{\sigma_y}$ Note that the coefficient of x in E(Y|X=x) is $\rho \frac{\sigma_y}{\sigma_x}$ Multiplying the two we get ρ^2 .

Therefore
$$\rho^2 = (-0.15)(-0.6) = 0.09$$

Therefore
$$\rho = -\sqrt{0.09} = -0.3$$

Negative sign because coefficient of y in E(X|Y=y) is $=-0.15=\rho\frac{\sigma_y}{\sigma_x}$ and σ_x and σ_y are positive.

$$var(Y|X=x) = \sigma_y^2(1-\rho^2) = 3.64$$

$$\Rightarrow \sigma_y^2(1-0.09) = 3.64$$

$$\Rightarrow \sigma_y^2 = 4$$

Now

$$\frac{\rho \sigma_x}{\sigma_y} = -0.15 \quad \Rightarrow \quad \frac{(-0.3)\sigma_x}{2} = -0.15$$
$$\Rightarrow \quad \sigma_x = 1$$

Now
$$\mu_x - 0.15(-\mu_y) = 3.7$$
 and $\mu_y - 0.6(-\mu_x) = 0.4$ solve for μ_x, μ_y .
Final answer: $\mu_x = 4$, $\mu_y = 2$, $\sigma_x = 1$, $\sigma_y = 2$, $\rho = -0.3$