Question

Suppose that X and Y is $N_{2}\left(\mu_{x}, \mu_{y}, \sigma_{x}, \sigma_{y}, \rho\right)$ for which
$E(X \mid Y=y)=3.7-0.15 y, E(Y \mid X=x)=0.4-0.6 x, \operatorname{var}(Y \mid X=x)=3.64$.
Find all the five parameters.

Answer

We know

$$
\begin{aligned}
& E(X \mid Y=y)=\mu_{x}+\rho \frac{\sigma_{x}}{\sigma_{y}}\left(y-\mu_{y}\right) \\
& E(Y \mid X=x)=\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right) \\
& \quad \operatorname{var}(Y \mid X=x)=\sigma_{y}^{2}\left(1-\rho^{2}\right)
\end{aligned}
$$

Here:

$$
\begin{gathered}
E(X \mid Y=y)=3.7-0.15 y \\
E(Y \mid X=x)=0.4-0.6 x \\
\quad \operatorname{var}(Y \mid X=x)=3.64
\end{gathered}
$$

Note that the coefficient of y in $E(X \mid Y=y)$ is $\rho \frac{\sigma_{x}}{\sigma_{y}}$
Note that the coefficient of x in $E(Y \mid X=x)$ is $\rho \frac{\sigma_{y}}{\sigma_{x}}$
Multiplying the two we get ρ^{2}.
Therefore $\rho^{2}=(-0.15)(-0.6)=0.09$
Therefore $\rho=-\sqrt{0.09}=-0.3$
Negative sign because coefficient of y in $E(X \mid Y=y)$ is $=-0.15=\rho \frac{\sigma_{y}}{\sigma_{x}}$ and σ_{x} and σ_{y} are positive.

$$
\begin{aligned}
\operatorname{var}(Y \mid X=x) & =\sigma_{y}^{2}\left(1-\rho^{2}\right)=3.64 \\
& \Rightarrow \sigma_{y}^{2}(1-0.09)=3.64 \\
& \Rightarrow \sigma_{y}^{2}=4
\end{aligned}
$$

Now

$$
\begin{aligned}
\frac{\rho \sigma_{x}}{\sigma_{y}}=-0.15 & \Rightarrow \frac{(-0.3) \sigma_{x}}{2}=-0.15 \\
& \Rightarrow \sigma_{x}=1
\end{aligned}
$$

$\left.\begin{array}{rl}\text { Now } \mu_{x}-0.15\left(-\mu_{y}\right) & =3.7 \\ \text { and } \quad \mu_{y}-0.6\left(-\mu_{x}\right) & =0.4\end{array}\right\}$ solve for μ_{x}, μ_{y}.
Final answer: $\mu_{x}=4, \mu_{y}=2, \sigma_{x}=1, \sigma_{y}=2, \rho=-0.3$

