Question

Let X and Y denote the scores of two class tests for a randomly selected student, called Miss T. Assume that X and Y is bivariate normal $N_{2}\left(\mu_{x}=85, \mu_{y}=90, \sigma_{x}=10, \sigma_{y}=16, \rho=0.8\right)$.
(a) What is the probability that the sum of her score on the first two tests will be greater than 200 ?
(b) What is the probability that her score on the first test (X) will be higher than her score on the second test?
(c) If Miss T's score X on the first test is 80 , what is the probability that her score on the second test will be higher than 90 ?

Answer

(a) Let $W=X+Y$

$$
\begin{aligned}
E(W) & =E(X)+E(Y) \\
& =\mu_{x}+\mu_{y}=85+90=175
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{var}(W) & =\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X, Y) \\
& =10^{2}+16^{2}+2(0.8)(10)(16) \\
& =612
\end{aligned}
$$

Since W is a linear combination of X and Y

$$
W \sim N(175,612)
$$

Therefore

$$
\begin{aligned}
P(W>200) & =P\left\{\frac{W-175}{\sqrt{612}}>\frac{200-175}{\sqrt{612}}\right\} \\
& =1-\Phi\left(\frac{25}{\sqrt{612}}\right)=0.1562
\end{aligned}
$$

(b) Let $W=X-Y$

Therefore $E(W)=85-90=-5$
$\operatorname{var}(W)=10^{2}+16^{2}-2(0.8)(10)(16)=100$
$P(W>0)=P\left\{\frac{W-(-5)}{10}>\frac{0-(-5)}{10}\right\}=1-\Phi\left(\frac{1}{2}\right)=0.3085$
(c) $P(Y>90 \mid X=80)$

We need the distribution of $Y \mid X=x$.

$$
\begin{aligned}
& E(Y \mid X=x)=\mu_{y}+\rho \frac{\sigma_{y}}{\sigma_{x}}\left(x-\mu_{x}\right) \\
& \operatorname{var}(Y \mid X=x)=\sigma_{y}^{2}\left(1-\rho^{2}\right)=16^{2}\left(1-0.8^{2}\right)=92.16
\end{aligned}
$$

Therefore $E(Y \mid X=x)=90+0.8 \frac{16}{10}(80-85)=83.6$
Therefore

$$
\begin{aligned}
P(Y>90 \mid X=80) & =P\left\{\left.\frac{Y-83.6}{9.6}>\frac{90-83.6}{9.6} \right\rvert\, X=80\right\} \\
& =P\left(Z>\frac{6.4}{9.6}\right) \text { where } Z \sim N(0,1) \\
& =0.2525
\end{aligned}
$$

