Question

For each subset S of \mathbf{R} given below, determine whether S is bounded above, bounded below, bounded, or neither. If S is bounded above, determine $\sup (S)$, and decide whether or not $\sup (S)$ is an element of S. If S is bounded below, determine $\inf (S)$, and decide whether or not $\inf (S)$ is an element of S.

1. $S=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbf{Z}-\{0\}\right\}$;
2. $S=\left\{2^{x} \mid x \in \mathbf{Z}\right\}$;
3. $S=[-1,1] \cup\{5\}=\{x \in \mathbf{R} \mid-1 \leq x \leq 1\} \cup\{5\} ;$
4. $S=\left\{\left.\frac{x}{2^{y}} \right\rvert\, x, y \in \mathbf{N}\right\}$;
5. $S=\left\{\left.\frac{n+1}{n} \right\rvert\, n \in \mathbf{N}\right\}$;
6. $S=\left\{\left.(-1)^{n}\left(1+\frac{1}{n}\right) \right\rvert\, n \in \mathbf{N}\right\}$;
7. $S=\left\{x \in \mathbf{Q} \mid x^{2}<10\right\}$;
8. $S=\{x \in \mathbf{R}| | x \mid>2\}$;

Answer

1. Bounded above by 1 (since for $n \in \mathbf{Z}-\{0\}$, either $n \geq 1$ in which case $\frac{1}{n} \leq 1$, or $n \leq-1$, in which case $\frac{1}{n} \leq 0$), and so has a supremum. Since 1 is an upper bound for S and since $1 \in S, 1=\sup (S)$. In this case, $\sup (S) \in S$.

Bounded below by -1 (since for $n \in \mathbf{Z}-\{0\}$, either $n \geq 1$, in which case $0<\frac{1}{n}$, or $n \leq-1$, in which case $\frac{1}{n} \geq \frac{1}{-1}=-1$), and so has an infimum. Since -1 is a lower bound for S and since $-1 \in S,-1=\inf (S)$. In this case, $\inf (S) \in S$.

Since S is both bounded above and bounded below, it is bounded.
2. Bounded below by 0 (since $2^{x}>0$ for all $x \in \mathbf{R}$, we certainly have that $2^{x}>0$ for all $x \in \mathbf{Z}$), and so has an infimum. Given any $\varepsilon>0$, we can always find x so that $2^{x}<\varepsilon$, namely take $\log _{2}$ of both sides, and take x to be any integer less than $\log _{2}(\varepsilon)$. Hence, there is no positive lower bound, and so the greatest lower bound, the infimum, is $\inf (S)=0$. Since there are no solutions to $2^{x}=0$, in this case $\inf (S) \notin S$.

Since $2^{x}>x$ for positive integers x, given any $C>0$ we can find an x so that $2^{x}>C$, and so there is no upper bound. That is, S is not bounded above.

Since S is not bounded above, it is not bounded.
3. Bounded below by -1 (since $[-1,1]=\{x \in \mathbf{R} \mid-1 \leq x \leq 1\}$ and since $-1<5$), and so has an infimum. Since -1 is a lower bound for S and since $-1 \in S,-1=\inf (S)$. In this case, $\inf (S) \in S$.

Bounded above by 5 , and so has a supremum. Since 5 is an upper bound for S and since $5 \in S, 5=\sup (S)$. In this case, $\sup (S) \in S$.

Since S is both bounded above and bounded below, it is bounded.
4. Considering the subset of S in which $y=1$, we have that S contains the natural numbers \mathbf{N}, and hence S is not bounded above.

Since x and 2^{y} are both positive for $x, y \in \mathbf{N}$, we have that $\frac{x}{2^{y}}>0$ for all $x, y \in \mathbf{N}$. Therefore, S is bounded below by 0 , and so has an infimum. Considering the subset of S in which $x=1$, we have that S contains $\frac{1}{2^{y}}$ for all $y \in \mathbf{N}$. In particular, for each $\varepsilon>0$, we can find $y \in \mathbf{N}$ so that $\frac{1}{2^{y}}<\varepsilon$, namely take $\log _{2}$ of both sides to get $-y<\log _{2}(\varepsilon)$, or equivalently $y>\log _{2}(\varepsilon)$. Hence, there is no positive lower bound, and so $0=\inf (S)$. Since $\frac{x}{2^{y}}$ is never 0 for $x, y>0$, in this case $\inf (S) \notin S$.

Since S is not bounded above, it is not bounded.
5. Write $\frac{n+1}{n}=1+\frac{1}{n}$. Bounded below by 1 , since $\frac{1}{n}>0$ for all $n \in \mathbf{N}$, and hence $1+\frac{1}{n}>1$ for all $n \in \mathbf{N}$. Moreover, since for each $\varepsilon>1$ we can find n so that $1+\frac{1}{n}<\varepsilon$, there is no lower bound greater than 1 , and so $\inf (S)=1$. In this case, $\inf (S) \notin S$, since $1+\frac{1}{n} \neq 1$ for all $n \in \mathbf{N}$.

Bounded above by 2 , since $\frac{1}{n} \leq 1$ for all $n \in \mathbf{N}$ and hence $1+\frac{1}{n} \leq 2$. In this case, $2=1+\frac{1}{1}$ and so $2 \in S$. Since 2 is an upper bound for S that is contained in S, we have that $2=\sup (S)$ and so $\sup (S) \in S$.

Since S is both bounded above and bounded below, it is bounded.
6. Break S up into two subsets, one of the positive terms (when n is even) and the negative terms (when n is odd). So, $S=\left\{-2,-\frac{4}{3},-\frac{6}{5}, \ldots\right\} \cup$ $\left\{\frac{3}{2}, \frac{5}{4}, \frac{7}{6}, \ldots\right\}$.

The positive terms are all of the form $1+\frac{1}{n}$ where n is even. Since $\frac{1}{n}$ decreases as n increases, the largest positive term is $1+\frac{1}{2}=\frac{3}{2}$, and so
S is bounded above and hence has a supremum. Since S is bounded above by $\frac{3}{2}$ and since $\frac{3}{2} \in S, \sup (S)=\frac{3}{2}$, and in this case $\sup (S) \in S$.

The negative terms are all of the form $1+\frac{1}{n}$ where n is odd. Since $\frac{1}{n}$ decreases as n increases, $-\frac{1}{n}$ increases as n increases, and so the smallest negative term is $\frac{-1-1}{1}=-2$, and so S is bounded below and hence has an infimum. Since S is bounded below by -2 and since $-2 \in S, \inf (S)=-2$, and in this case $\inf (S) \in S$.

Since S is both bounded above and bounded below, it is bounded.
7. We can rewrite S as $S=(-\sqrt{10}, \sqrt{10}) \cap \mathbf{Q}$. By the definition of $(-\sqrt{10}, \sqrt{10}), S$ is bounded below by $-\sqrt{10}$, and hence has an infimum. Since there are rational numbers greater than $-\sqrt{10}$ but arbitrarily close to $-\sqrt{10}$ (as can be seen by taking the decimal expansion of $-\sqrt{10}$ and truncating it after some number of places to get a rational number near $-\sqrt{10}$), there is no lower bound greater than $-\sqrt{10}$, and so $\inf (S)=-\sqrt{10}$. In this case, $\inf (S) \notin S$.
S is bounded above by $\sqrt{10}$, and hence has a supremum. Since there are rational numbers less than $\sqrt{10}$ but arbitrarily close to $\sqrt{10}$ (as can be seen by taking the decimal expansion of $\sqrt{10}$ and truncating it after some number of places to get a rational number near $\sqrt{10}$), there is no upper bound less than $\sqrt{10}$, and so $\sup (S)=\sqrt{10}$. In this case, $\sup (S) \notin S$.

Since S is both bounded above and bounded below, it is bounded.
8. Rewrite S as $S=(-\infty,-2) \cup(2, \infty)$. This set is neither bounded above (since for each real number r, there is $s \in S$ with $s>r$, namely the larger of 3 and $r+1$) nor bounded below (since for each real number r, there is $s \in S$ with $s<r$, namely the smaller of -3 and $r-1$).

Since S is not bounded below, it has no infimum. Since S is not bounded above, it has no supremum.

Since S is neither bounded above not bounded below, it is not bounded.

