Question

For each of the following, either give an example of a subset S of \mathbf{R} satisfying the stated property, or prove that no such set exists.

1. S has a rational lower bound and $\inf (S)$ is irrational;
2. S has a rational lower bound and $\inf (S)$ is rational;
3. S has an irrational lower bound and $\inf (S)$ is rational;
4. S has an irrational lower bound and $\inf (S)$ is irrational;

Answer

[Note that each of these exercises has many, many possible solutions. And yes, it is a very silly question.]

1. Take $S=\{x \in \mathbf{R} \mid x>\sqrt{2}\}$, so that $\inf (S)=\sqrt{2}$, which is irrational, and S is also bounded below by 0 , which is rational. (In fact, any set of real numbers that is bounded below has both infinitely many rational lower bounds and infinitely many irrational lower bounds.)
2. Take $S=(0, \infty)$, so that $\inf (S)=0$, which is rational, and S is bounded below by -1 , which is also rational.
3. Take $S=(2,4)$, so that $\inf (S)=2$, which is rational, and S is also bounded below by $-\pi$, which is irrational.
4. Take $S=(\sqrt{3}, \infty)$, so that $\inf (S)=\sqrt{3}$, which is irrational, and S is also bounded below by $\sqrt{2}$, which is also irrational.
