Question

a) Find the images, in the w-plane, of lines parallel to the real and imaginary axes in the z-plane, under the transformation $w=e^{z}$. Explain how this illustrates the concept of conformality.
b) Show that any Mobius transforamtion mapping the upper half plane $\operatorname{im}(z) \geq 0$ into the upper half plane $\operatorname{im}(w) \geq 0$ must be of the form

$$
w=\frac{\alpha z+\beta}{\gamma z+\delta}
$$

where $\alpha, \beta, \gamma, \delta$ are all real and $\alpha \delta-\beta \gamma>0$. Deduce the general form of Mobius transformation mapping $\operatorname{im}(z) \geq 0$ onto the right hand half plane $\operatorname{re}(w) \geq 0$.

Answer

a) Let $w=e^{z}$ and write $z=x+i y$. Then $w=e^{x+i y}=e^{x} e^{i y}$.

For x constant, as y varies over \mathbf{R}, w traces round the circle centre O radius e^{x} in the w plane, infinitely many times.
For y constant, as x varies over \mathbf{R}, w traces the ray from O (but not including O) making an angle $y(\bmod 2 \pi)$ with the positive real axis.
Lines parallel to the real and imaginary axes in the z-plane are orthogonal, as are circles centre O and rays from O in the w-plane.
This illustrates the angle-preserving property which is that of conformality.
b) The required transformations must map the real axis to the real axis (boundary \rightarrow boundary).
Thus a pair of finite non-real conjugate points map to a pair of finite non-real conjugate points. Hence $z=\infty$ maps onto the real axis and $w=\infty$ is the image point on the real axis.
i) If $\infty \rightarrow \infty$ then $C=0$, so $d \neq 0$ and $w=\alpha z+\beta$. $z=0 \rightarrow \operatorname{real} w$ so β is real. then $z=1 \rightarrow$ real w so α is real.
ii) If $C \neq 0, w=\frac{A z+B}{z+D}$
$z=-D \rightarrow w=\infty$ so $-D$ must be real.
$D=0 \Rightarrow w=A+\frac{B}{z}$
$z=\infty \rightarrow \operatorname{real} w$ so A is real.
then $z=1 \rightarrow$ real w so B is real.
$D \neq 0 \Rightarrow z=0 \rightarrow \frac{B}{D}$ - real so B is real.
then $z=1 \rightarrow w$ real so A is real.
Thus in all cases the transformation has the form
$w=\frac{\alpha z+\beta}{\gamma z+\delta}, \alpha, \beta, \gamma, \delta$ real
when $z=i, \operatorname{im} w>0$,

$$
\frac{\alpha z+\beta}{\gamma z+\delta}=\frac{(\alpha \delta-\beta \gamma) i+(\alpha \gamma+\beta \delta)}{\gamma^{2}+\delta^{2}} \text { so } \alpha \delta-\beta \gamma>0
$$

Now $w=e^{-i \frac{\pi}{2}} \frac{\alpha z+\beta}{\gamma z+\delta}$ maps im $z \geq 0$ onto re $z \geq 0$.
Conversely if $w=\frac{a z+b}{c z+d}$ maps im $z \geq 0$ to re $w \geq 0$ then $w=e^{i \frac{\pi}{2}} \frac{a z+b}{c z+d}$ maps $\operatorname{im} z \geq 0$ to $\operatorname{im} w \geq 0$.
So $e^{i \frac{\pi}{2}} a=\alpha$ - real
$a=\alpha e^{-i \frac{\pi}{2}}$
So $w=e^{-i \frac{\pi}{2}} \frac{\alpha z+\beta}{\gamma z+\delta}$
$\alpha, \beta, \gamma, \delta$ are all real and $\alpha \delta-\beta \gamma>0$.

