Question

a) Prove that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(a-n)^{2}}=\frac{\pi^{2}}{\sin ^{2} \pi a}
$$

where a is not an integer.
b) State Rouche's Theorem.

Suppose that $g(z)$ is analytic inside and on the unit circle $|z|=1$, and that $|g(z)|<1$ for z on this circle. Show that there is a unique point z_{0} inside the circle for which $g\left(z_{0}\right)=z_{0}$.

Answer

a) The function $f(z)=\frac{\pi \cot \pi z}{(a-z)^{2}}$ has simple poles at $z=0, \pm 1 \cdots$.

At $z=n$ the residue is $\frac{1}{(a-n)^{2}}$.
The function has a pole of order 2 at $z=a$, and we have to calculate the residue.

By Taylor's theorem
$\pi \cot \pi z=\pi \cot \pi a-\pi^{2} \csc ^{2} \pi a(z-a)+$ terms of higher degree in $(z-a)$.
So $\frac{\pi \cot \pi z}{(z-a)^{2}}=\frac{\pi \cot \pi a}{(z-a)^{2}}-\frac{\pi^{2} \csc ^{2} \pi a}{(z-a)}+g(z)$ (which is analytic)
So the residue is $-\pi^{2} \csc ^{2} \pi a$
or, we can use the formula $\operatorname{res}(f, a)=\left.\frac{d}{d z}(z-a)^{2} f(z)\right|_{z=a}$
Now let C_{N} be the square with vertices $\pm\left(N+\frac{1}{2}\right)(1 \pm i) \quad N \geq 0$
On the upper sides parallel to the real axis $z=x+\left(N+\frac{1}{2}\right) i$.

$$
|\cot \pi z|=\left|\frac{\cos \pi z}{\sin \pi z}\right|=\left|i \frac{e^{i \pi z}+e^{-i \pi z}}{e^{i \pi z}-e^{-i \pi z}}\right|=\left|\frac{e^{2 i \pi z}+1}{e^{2 i \pi z}-1}\right|
$$

$\leq \frac{1+\mid e^{2 \pi i z \mid}}{1-\mid e^{2 \pi i z \mid}}=\frac{1+e^{-2 \pi\left(N+\frac{1}{2}\right)}}{1-e^{-2 \pi\left(N+\frac{1}{2}\right)}} \leq \frac{2}{1-e^{-\pi}}(N \geq 0)$ for all N.
Also since $|\cot \pi z|=|\cot \pi(-z)|$ the same bound serves on the bottom side of the square.
On the sides parallel to the imaginary axis $z= \pm\left(N+\frac{1}{2}\right)+i y$.
$|\cot \pi z|=\left|\cot \pi\left(\pm N+\frac{1}{2}+i y\right)\right|$
$=\left|\cot \pi\left(\frac{1}{2}+i y\right)\right|=|-\tan \pi i y|=|\tanh y| \leq 1$
So $\exists K$ independent of N, such that $|\pi \cot \pi z| \leq K$ for $z \in C_{N}$.
Now provided $N \geq|a|$, we have
$\int_{C_{N}} f(z) d z=2 \pi i\left\{\sum_{n=-N}^{N} \frac{1}{(a-n)^{2}}-\pi^{2} \csc ^{2} \pi a\right\}$
Now $\left|\int_{C_{N}} \frac{\pi \cot \pi z}{(a-z)^{2}} d z\right| \leq \frac{K 8\left(N+\frac{1}{2}\right)}{\left(N+\frac{1}{2}-|a|\right)^{2}} \rightarrow 0$ as $N \rightarrow \infty$.
since $|z| \geq N+\frac{1}{2}$ on C_{N}.
Letting $N \rightarrow \infty$ therefore gives $\sum_{n=-\infty}^{\infty} \frac{1}{(a-n)^{2}}=\frac{\pi^{2}}{\sin ^{2} \pi a}$
b) Rouche's Theorem is as follows:

If $f(z)$ and $g(z)$ are both analytic inside and on the closed contour C, and if $|g(z)|<|f(z)|$ on C then $f(z)$ and $F(z)+g(z)$ have the same number of zeros inside C, (counting multiplicities).
Let $f(z)=-z$. Then for z on C
$|f(z)|=|z|=1>|g(z)|$
SO by Rouche's theorem $f(z)$ and $f(z)+g(z)$ have the same number of zeros inside C. $f(z)=0$ only for $z=0$ - a simple zero, so $g(z)-z=0$ has a unique solution z_{0} inside C.
i.e. $g\left(z_{0}\right)=z_{0}$.

