Question
a) Find a rational function R(z) having the following properties:

i) The only singularities are poles of order 3 at z = +i and z = —i,
and a simple pole at z = 0 with residue 2,

ii) R has a zero of order 2 at z =1,
iii) |l‘im 2R(z) =1,
iv) R(—1) = —1.
What is the behaviour of R(z) at infinity?

b) Find the Laurent series for

in the regions

i) fa] < |z[ <o,

i) |z| > 10|
Answer
_ P(z)
a) Let R(z) = o0

Then by (i) Q(2) = (z —i)3(z +i)%2 = 2(2? + 1)3
by (i) P(z) = (z — 1)2M(2)

by (iii) 22 R(z) has a non-zero finite limit as |z| — oo, so z3P(z) and
Q(z) have the same degree, namely 7. So M (z) is quadratic.
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Finally by (iv)
(=2*((=1)* - B +2)

R(-1) = —y — -1
so3—DB=2 ie. B=1

(21224 2+ 2)
Thus R(z) = RN

To investigate the behaviour at infinity, consider R(%)
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S0 R(%) has a zero of order 3 at z = 0.
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i.e. R(z) has a zero of order 3 at z = co.
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Now for |a] > |z|
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whereas for |a| < |z]

1 1 1< a a? )
= =14+ —4+ =+ -
Z—« z(l—%) z

So (i) |al < |2| < [b
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(ii) |2| > [b|




