QUESTION

Show that

(a)
$$\nabla \times (\nabla \phi) = \mathbf{0}$$
 (b) $\nabla \cdot (\nabla \times \mathbf{a}) = 0$

ANSWER

(a)
$$\mathbf{a} = (x^2y, -2xz, 2yz)$$

 $\nabla \times \mathbf{a} = (2z - 2x, 0, -2z - x^2)$
 $\nabla \times (\nabla \times \mathbf{a}) = (0, 2 + 2x, 0)$

(b) Same vector
$$\mathbf{a}$$
, $\nabla \cdot \mathbf{a} = 2xy + 2y$
 $\nabla(\nabla \cdot \mathbf{a}) = (2y, 2x + 2, 0)$
 $\nabla^2 \mathbf{a} = (2y, 0, 0)$
 $\nabla(\nabla \cdot \mathbf{a}) - \nabla^2 \mathbf{a} = (0, 2x + 2, 0)$
This should agree with $2(\mathbf{a})$ by a general formula!