Question

The plane curve $\alpha(t) = (2 + \cos t, \sin t)$ is a circle. The space curve

$$\gamma(t) = ((2 + \cos t)\cos t, (2 + \cos t)\sin t, \sin t)$$

lies on a torus, thought of as being swept out by α as the plane of α is spun around the z-axis in \mathbb{R}^3 . Show that the curvature of γ vanishes at (-1,0,0). Find the curvature and the torsion of γ at the point (3,0,0), and find the equation of the osculating plane there.

Answer

If $\underline{u} = (a, b)$ is a unit vector in the (x, y)-plane, then ((2 + c)a, (2 + c)b, s) is a point on a circle in the (\underline{u}, x) -plane (centre $2\underline{u}$, radius 1).

Thus $\gamma(t)$ is on the torus swept out by these circles as \underline{u} goes around the unit circle in the (x,y)-plane.

$$\gamma'(t) = (-2\sin t - \sin 2t, 2\cos t + \cos 2t, \cos t)$$

$$\gamma''(t) = (-2\cos t - 2\cos 2t, -2\sin t - 2\sin 2t, -\sin t)$$

$$K = 0 \implies x'y'' - x''y' = 0$$

i.e. $(2\sin t + \sin 2t)(-2\sin t - 2\sin 2t) = *2\cos t + 2\cos 2t)(2\cos t + \cos 2t)$
 $\Rightarrow -6 = 6(\cos t \cos 2t + \sin t \sin 2t)$
i.e. $-1 = \cos t$
 $t = \pi \ (+2n\pi, n \in \mathbf{Z})$

So curvature vanishes at (-1,0,0) (as C passes through the inner "equator").

$$\gamma'''(t) = (2\sin t + 4\sin 2t, -2\cos t - 4\cos 2t, -\cos t)$$

and at (3,0,0) (i.e t = 0) we have

$$\gamma' = (0,3,1)
\gamma'' = (-4,0,0)
\gamma''' = (0,-6,-1)
\gamma' \cap \gamma'' = (0,-4,12)$$

There,
$$\tau = \frac{\gamma' \cap \gamma''.\gamma'''}{\|\gamma' \cap \gamma''\|^2} = \frac{12}{160} = \frac{3}{40}$$

The binomial B is in the direction of $\gamma' \cap \gamma''$, so

$$B = \frac{1}{\sqrt{160}}(0, -4, 12) = \frac{1}{\sqrt{10}}(0, -1, 3).$$

Osculating plane is $\perp B$ so has the equation 0x - y + 3z = constant = 0, since it contains the point (3,0,0).

So OSC plane is: y = 3z.