Question

The plane curve $\alpha(t)=(2+\cos t, \sin t)$ is a circle. The space curve

$$
\gamma(t)=((2+\cos t) \cos t,(2+\cos t) \sin t, \sin t)
$$

lies on a torus, thought of as being swept out by α as the plane of α is spun around the z-axis in \mathbf{R}^{3}. Show that the curvature of γ vanishes at $(-1,0,0)$. Find the curvature and the torsion of γ at the point ($3,0,0$), and find the equation of the osculating plane there.
Answer
If $\underline{u}=(a, b)$ is a unit vector in the (x, y)-plane, then $((2+c) a,(2+c) b, s)$ is a point on a circle in the (\underline{u}, x)-plane (centre $2 \underline{u}$, radius 1).
Thus $\gamma(t)$ is on the torus swept out by these circles as ugoes around the unit circle in the (x, y)-plane.

$$
\begin{aligned}
\gamma^{\prime}(t) & =(-2 \sin t-\sin 2 t, 2 \cos t+\cos 2 t, \cos t) \\
\gamma^{\prime \prime}(t) & =(-2 \cos t-2 \cos 2 t,-2 \sin t-2 \sin 2 t,-\sin t)
\end{aligned}
$$

$$
K=0 \Rightarrow x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}=0
$$

i.e. $(2 \sin t+\sin 2 t)(-2 \sin t-2 \sin 2 t)=* 2 \cos t+2 \cos 2 t)(2 \cos t+\cos 2 t)$

$$
\Rightarrow-6=6(\cos t \cos 2 t+\sin t \sin 2 t)
$$

i.e. $-1=\cos t$

$$
t=\pi \quad(+2 n \pi, n \in \mathbf{Z})
$$

So curvature vanishes at $(-1,0,0)$ (as C passes through the inner "equator").

$$
\gamma^{\prime \prime \prime}(t)=(2 \sin t+4 \sin 2 t,-2 \cos t-4 \cos 2 t,-\cos t)
$$

and at $(3,0,0)$ (i.e $t=0$) we have

$$
\begin{aligned}
\gamma^{\prime} & =(0,3,1) \\
\gamma^{\prime \prime} & =(-4,0,0) \\
\gamma^{\prime \prime \prime} & =(0,-6,-1) \\
\gamma^{\prime} \cap \gamma^{\prime \prime} & =(0,-4,12)
\end{aligned}
$$

There, $\tau=\frac{\gamma^{\prime} \cap \gamma^{\prime \prime} \cdot \gamma^{\prime \prime \prime}}{\left\|\gamma^{\prime} \cap \gamma^{\prime \prime}\right\|^{2}}=\frac{12}{160}=\frac{3}{40}$
The binomial B is in the direction of $\gamma^{\prime} \cap \gamma^{\prime \prime}$, so

$$
B=\frac{1}{\sqrt{160}}(0,-4,12)=\frac{1}{\sqrt{10}}(0,-1,3)
$$

Osculating plane is $\perp B$ so has the equation $0 x-y+3 z=$ constant $=0$, since it contains the point $(3,0,0)$.
So OSC plane is: $y=3 z$.

