Question

(i) Show that the space curve $\gamma(t)=\left(t, t^{-1}(1+t), t^{-1}\left(1-t^{2}\right)\right)$ is in fact planar. (ii) Find a differential equation that the function $g(t)$ must satisfy in order for the curve

$$
\gamma(t)=(\cos t, \sin t, g(t))
$$

to be planar. Hence find the most general such function $g(t)$.
[Hint: $B(t)$ has constant direction.]
Answer
(i) Observe that $\gamma(t)=\left(t, \frac{1}{t}+1, \frac{1}{t}-1\right)$ which lies in $x-y+z=-1$,

OR: Check that $\dot{\gamma} \cap \ddot{\gamma}=\left(\frac{2}{t^{3}},-\frac{2}{t^{3}}, \frac{2}{t^{3}}\right)=\frac{2}{t^{3}}(1,-1,1)$
so $B(t)=\dot{\gamma} \cap \ddot{\gamma} /\|\dot{\gamma} \cap \ddot{\gamma}\|=\frac{1}{\sqrt{3}}(1,-1,1)$, i.e. constant.
(ii) Here $\dot{\gamma} \cap \ddot{\gamma}=(\cos t \ddot{g}+\sin t \dot{g}, \sin t \ddot{g}-\cos t \dot{g}, 1)$; then γ is planar precisely when this vector has constant direction, $=(a, b, 1)$ say.
Solving for (\dot{g}, \ddot{g}) we find $\dot{g}=a \sin t-b \cos t$ (and $\ddot{g}=a \cos t+b \sin t$).
So $g(t)=A \cos t+B \sin t+C$ for arbitrary constants A, B and C.
OR: $I=0$ when $\dot{\gamma} \cap \ddot{\gamma} \cdot \ddot{\gamma}=0$ which leads to $\ddot{g}+\dot{g}=0$. Hence $\dot{g}=h$ satisfies $\ddot{h}+h=)$, so $h=\alpha \cos t+\beta \sin t$.

$$
\Rightarrow g(t)=A \cos t+B \sin t+C .
$$

