Question

- (i) Show that the space curve $\gamma(t) = (t, t^{-1}(1+t), t^{-1}(1-t^2))$ is in fact planar.
- (ii) Find a differential equation that the function g(t) must satisfy in order for the curve

$$\gamma(t) = (\cos t, \sin t, g(t))$$

to be planar. Hence find the most general such function q(t).

[Hint: B(t) has constant direction.]

Answer

(i) Observe that $\gamma(t) = \left(t, \frac{1}{t} + 1, \frac{1}{t} - 1\right)$ which lies in x - y + z = -1,

OR: Check that $\dot{\gamma} \cap \ddot{\gamma} = \left(\frac{2}{t^3}, -\frac{2}{t^3}, \frac{2}{t^3}\right) = \frac{2}{t^3}(1, -1, 1)$

so $B(t) = \dot{\gamma} \cap \ddot{\gamma} / ||\dot{\gamma} \cap \ddot{\gamma}|| = \frac{1}{\sqrt{3}} (1, -1, 1)$, i.e. constant.

(ii) Here $\dot{\gamma} \cap \ddot{\gamma} = (\cos t \ddot{g} + \sin t \dot{g}, \sin t \ddot{g} - \cos t \dot{g}, 1)$; then γ is planar precisely when this vector has constant direction, = (a, b, 1) say.

Solving for (\dot{g}, \ddot{g}) we find $\dot{g} = a \sin t - b \cos t$ (and $\ddot{g} = a \cos t + b \sin t$).

So $g(t) = A\cos t + B\sin t + C$ for arbitrary constants A, B and C.

OR: I = 0 when $\dot{\gamma} \cap \ddot{\gamma}.\ddot{\gamma} = 0$ which leads to $\ddot{g} + \dot{g} = 0$. Hence $\dot{g} = h$ satisfies $\ddot{h} + h = 1$, so $h = \alpha \cos t + \beta \sin t$.

$$\Rightarrow g(t) = A\cos t + B\sin t + C.$$