Question

Let $\gamma(t)$ be a regular plane curve, and let d be a positive constant. The curve $\delta(t)$ given by

$$\delta(t) = \gamma(t) + dN(t)$$

is called the parallel to γ at distance d. Show that $\delta(t)$ is a regular curve except where δ intersects the evolute of γ .

Taking γ to be a parabola, sketch δ for increasing values of d.

Answer

 $\delta(t) = \gamma(t) + dN(t)$, where γ is unit speed, so $\dot{\gamma} = \gamma'$, $\dot{N} = N$.

 $\dot{\delta(t)} = \gamma'(t) + dN'(t) = T - dKT = (1 - dK)T.$

Thus $\dot{\delta} \neq 0$ except when 1 - dK = 0, i.e. $d = \rho = K^{-1}$;

then $\delta(t) = \text{centre of curve} \Rightarrow \text{lies on evolute.}$

Note how the singular points of the parallels trace out the evolute.