Question

Let $\gamma(t)$ be a regular plane curve, and let d be a positive constant. The curve $\delta(t)$ given by

$$
\delta(t)=\gamma(t)+d N(t)
$$

is called the parallel to γ at distance d. Show that $\delta(t)$ is a regular curve except where δ intersects the evolute of γ.
Taking γ to be a parabola, sketch δ for increasing values of d.
Answer
$\delta(t)=\gamma(t)+d N(t)$, where γ is unit speed, so $\dot{\gamma}=\gamma^{\prime}, \dot{N}=N$.
$\dot{\delta}(t)=\gamma^{\prime}(t)+d N^{\prime}(t)=T-d . K T=(1-d K) T$.
Thus $\dot{\delta} \neq 0$ except when $1-d K=0$, i.e. $d=\rho=K^{-1}$; then $\delta(t)=$ centre of curve \Rightarrow lies on evolute.

Note how the singular points of the parallels trace out the evolute.

