Let

$$\gamma_1(t) = (\cosh 2t + 2\cosh t, 2\sinh t - \sinh 2t)$$

$$\gamma_2(t) = (\cosh 2t - 2\cosh t, 2\sinh t - \sinh 2t).$$

Show that γ_2 is a regular curve, while γ_1 has a singularity at the point (3,0). Sketch γ_1 and γ_2 . Find the centre of curvature of γ_2 at the point (-1,0).

[Exploit symmetry, and look at the directions of the tangents to the curves.]

Answer

Write $\gamma(t) = (\cosh 2t + 2\epsilon \cosh t, 2 \sinh t - \epsilon \sinh 2t)$

Where $\epsilon = \pm 1$ (so γ_i has $\epsilon = (-1)^{i+1}$)

So $\dot{\gamma}(t) = (2\sinh 2t + 2\epsilon \sinh t, 2\cosh t - 2\epsilon \cosh 2t).$

For $\epsilon = -1$ the second component never vanishes ($\cosh t$ always ≤ 1); for $\epsilon = +1$ we have

first component = $2 \sinh t (2 \cosh t + \epsilon)$, which = 0 just when $\sinh t = 0$, i.e. t = 0; then $\dot{\gamma}(0) = (0,0)$, $\gamma(0) = (3,0)$.

Write $\gamma_i(t) = (x_i(t), y_i(t))$ for i = 1, 2 and note the following facts

- $x_i(t)$ is an even function $(\to +\infty$ as $t\to \pm \infty)$, $y_i(t)$ is an odd function.
- $y_i(t) = 0$ when $2 \sinh t = 2\epsilon \sinh t \cosh t$, i.e. t = 0 or $\epsilon \cosh t = 1$, i.e. t = 0 ($\epsilon = 1$). So γ_1 crosses the x-axis at (3,0), γ_2 crosses the x-axis at (-1,0).
- $x_i(t) = 0$ when $\cosh 2t = -2\epsilon \cosh t$, which does not happen when $\epsilon = 1$.

When $\epsilon = -1$ it occurs when $c = \cosh t$ satisfies $2c^2 - 1 = 2c$, i.e. $c = \frac{1}{2}(1 + \sqrt{3})$ (c always ≥ 1).

For $\epsilon = +1$ we have

$$\gamma(t) = \left(1 + \frac{(2t)^2}{2!} + \dots + 2\left(1 + \frac{t^2}{2!} + \dots\right), 2\left(t + \frac{t^3}{3!} + \dots\right) - \left(2t + \frac{(2t)^3}{3!} + \dots\right)\right)$$

$$= (3,0) + (3t^2 + \dots, -t^3 + \dots)$$

 $\Rightarrow \frac{3}{2}$ -power cusp.

Also $\dot{x}_i(t)$ has the same sign as t, and $\dot{y}_i(t)$ is always ≤ 0 for i=1 and >0 for i=2. Finally, the curves must never meet, they lie on opposite sides of the curve

$$(\cosh 2t, \sinh 2t) = \gamma_0(t)$$
, i.e. $x^2 - y^2 = 1$

•

When t=0 we find $\|\dot{\gamma}_2\|=4$ and $\dot{x}\ddot{y}-\dot{y}\ddot{x}=-8$, so $\rho=\frac{1}{K}=-8$. Also N(0)=(-1,0) so centre of curvature is

$$\gamma_2(0) + \rho N(0) = (7,0).$$